Matrix Computations

Matrix Computations PDF

Author: Gene Howard Golub

Publisher:

Published: 1996

Total Pages: 694

ISBN-13: 9780801837395

DOWNLOAD EBOOK →

Revised and updated, the third edition of Golub and Van Loan's classic text in computer science provides essential information about the mathematical background and algorithmic skills required for the production of numerical software. This new edition includes thoroughly revised chapters on matrix multiplication problems and parallel matrix computations, expanded treatment of CS decomposition, an updated overview of floating point arithmetic, a more accurate rendition of the modified Gram-Schmidt process, and new material devoted to GMRES, QMR, and other methods designed to handle the sparse unsymmetric linear system problem.

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations PDF

Author: Åke Björck

Publisher: Springer

Published: 2014-10-07

Total Pages: 800

ISBN-13: 3319050893

DOWNLOAD EBOOK →

Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work.

Fundamentals of Matrix Computations

Fundamentals of Matrix Computations PDF

Author: David S. Watkins

Publisher:

Published: 1991-01-16

Total Pages: 476

ISBN-13:

DOWNLOAD EBOOK →

The use of numerical methods continues to expand rapidly. At their heart lie matrix computations. Written in a clear, expository style, it allows students and professionals to build confidence in themselves by putting the theory behind matrix computations into practice instantly. Algorithms that allow students to work examples and write programs introduce each chapter. The book then moves on to discuss more complicated theoretical material. Using a step-by-step approach, it introduces mathematical material only as it is needed. Exercises range from routine computations and verifications to extensive programming projects and challenging proofs.

Handbook for Matrix Computations

Handbook for Matrix Computations PDF

Author: Thomas F. Coleman

Publisher: SIAM

Published: 1988-01-01

Total Pages: 271

ISBN-13: 9781611971040

DOWNLOAD EBOOK →

Provides the user with a step-by-step introduction to Fortran 77, BLAS, LINPACK, and MATLAB. It is a reference that spans several levels of practical matrix computations with a strong emphasis on examples and "hands on" experience.

Parallel Algorithms for Matrix Computations

Parallel Algorithms for Matrix Computations PDF

Author: K. Gallivan

Publisher: SIAM

Published: 1990-01-01

Total Pages: 207

ISBN-13: 9781611971705

DOWNLOAD EBOOK →

Describes a selection of important parallel algorithms for matrix computations. Reviews the current status and provides an overall perspective of parallel algorithms for solving problems arising in the major areas of numerical linear algebra, including (1) direct solution of dense, structured, or sparse linear systems, (2) dense or structured least squares computations, (3) dense or structured eigenvaluen and singular value computations, and (4) rapid elliptic solvers. The book emphasizes computational primitives whose efficient execution on parallel and vector computers is essential to obtain high performance algorithms. Consists of two comprehensive survey papers on important parallel algorithms for solving problems arising in the major areas of numerical linear algebra--direct solution of linear systems, least squares computations, eigenvalue and singular value computations, and rapid elliptic solvers, plus an extensive up-to-date bibliography (2,000 items) on related research.

Matrix Algebra

Matrix Algebra PDF

Author: James E. Gentle

Publisher: Springer Science & Business Media

Published: 2007-07-27

Total Pages: 536

ISBN-13: 0387708723

DOWNLOAD EBOOK →

Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.

Matrix Computations

Matrix Computations PDF

Author: Gene H. Golub

Publisher: JHU Press

Published: 2013-02-15

Total Pages: 781

ISBN-13: 1421407949

DOWNLOAD EBOOK →

This revised edition provides the mathematical background and algorithmic skills required for the production of numerical software. It includes rewritten and clarified proofs and derivations, as well as new topics such as Arnoldi iteration, and domain decomposition methods.

Matrix Analysis and Computations

Matrix Analysis and Computations PDF

Author: Zhong-Zhi Bai

Publisher: SIAM

Published: 2021-09-09

Total Pages: 496

ISBN-13: 1611976634

DOWNLOAD EBOOK →

This comprehensive book is presented in two parts; the first part introduces the basics of matrix analysis necessary for matrix computations, and the second part presents representative methods and the corresponding theories in matrix computations. Among the key features of the book are the extensive exercises at the end of each chapter. Matrix Analysis and Computations provides readers with the matrix theory necessary for matrix computations, especially for direct and iterative methods for solving systems of linear equations. It includes systematic methods and rigorous theory on matrix splitting iteration methods and Krylov subspace iteration methods, as well as current results on preconditioning and iterative methods for solving standard and generalized saddle-point linear systems. This book can be used as a textbook for graduate students as well as a self-study tool and reference for researchers and engineers interested in matrix analysis and matrix computations. It is appropriate for courses in numerical analysis, numerical optimization, data science, and approximation theory, among other topics