Matrix-Based Multigrid

Matrix-Based Multigrid PDF

Author: Yair Shapira

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 225

ISBN-13: 1475737262

DOWNLOAD EBOOK →

Many important problems in applied science and engineering, such as the Navier Stokes equations in fluid dynamics, the primitive equations in global climate mod eling, the strain-stress equations in mechanics, the neutron diffusion equations in nuclear engineering, and MRIICT medical simulations, involve complicated sys tems of nonlinear partial differential equations. When discretized, such problems produce extremely large, nonlinear systems of equations, whose numerical solution is prohibitively costly in terms of time and storage. High-performance (parallel) computers and efficient (parallelizable) algorithms are clearly necessary. Three classical approaches to the solution of such systems are: Newton's method, Preconditioned Conjugate Gradients (and related Krylov-space acceleration tech niques), and multigrid methods. The first two approaches require the solution of large sparse linear systems at every iteration, which are themselves often solved by multigrid methods. Developing robust and efficient multigrid algorithms is thus of great importance. The original multigrid algorithm was developed for the Poisson equation in a square, discretized by finite differences on a uniform grid. For this model problem, multigrid exhibits extremely rapid convergence, and actually solves the problem in the minimal possible time. The original algorithm uses rediscretization of the partial differential equation (POE) on each grid in the hierarchy of coarse grids that are used. However, this approach would not work for more complicated problems, such as problems on complicated domains and nonuniform grids, problems with variable coefficients, and non symmetric and indefinite equations. In these cases, matrix-based multi grid methods are in order.

Matrix-Based Multigrid

Matrix-Based Multigrid PDF

Author: Yair Shapira

Publisher: Springer

Published: 2008-11-01

Total Pages: 0

ISBN-13: 9780387564715

DOWNLOAD EBOOK →

Matrix-Based Multigrid introduces and analyzes the multigrid approach for the numerical solution of large sparse linear systems arising from the discretization of elliptic partial differential equations. Special attention is given to the powerful matrix-based-multigrid approach, which is particularly useful for problems with variable coefficients and nonsymmetric and indefinite problems. This book can be used as a textbook in courses in numerical analysis, numerical linear algebra, and numerical PDEs at the advanced undergraduate and graduate levels in computer science, math, and applied math departments. The theory is written in simple algebraic terms and therefore requires preliminary knowledge only in basic linear algebra and calculus.

Multilevel Block Factorization Preconditioners

Multilevel Block Factorization Preconditioners PDF

Author: Panayot S. Vassilevski

Publisher: Springer Science & Business Media

Published: 2008-10-22

Total Pages: 527

ISBN-13: 0387715649

DOWNLOAD EBOOK →

This monograph is the first to provide a comprehensive, self-contained and rigorous presentation of some of the most powerful preconditioning methods for solving finite element equations in a common block-matrix factorization framework. The book covers both algorithms and analysis using a common block-matrix factorization approach which emphasizes its unique feature. Topics covered include the classical incomplete block-factorization preconditioners, the most efficient methods such as the multigrid, algebraic multigrid, and domain decomposition. This text can serve as an indispensable reference for researchers, graduate students, and practitioners. It can also be used as a supplementary text for a topics course in preconditioning and/or multigrid methods at the graduate level.

A Multigrid Tutorial

A Multigrid Tutorial PDF

Author: William L. Briggs

Publisher: SIAM

Published: 2000-07-01

Total Pages: 318

ISBN-13: 9780898714623

DOWNLOAD EBOOK →

Mathematics of Computing -- Numerical Analysis.

multigrid methods

multigrid methods PDF

Author: Stephen F. Mccormick

Publisher: CRC Press

Published: 2020-08-11

Total Pages: 665

ISBN-13: 100010379X

DOWNLOAD EBOOK →

This book is a collection of research papers on a wide variety of multigrid topics, including applications, computation and theory. It represents proceedings of the Third Copper Mountain Conference on Multigrid Methods, which was held at Copper Mountain, Colorado.

Numerical Solution of Partial Differential Equations on Parallel Computers

Numerical Solution of Partial Differential Equations on Parallel Computers PDF

Author: Are Magnus Bruaset

Publisher: Springer Science & Business Media

Published: 2006-03-05

Total Pages: 491

ISBN-13: 3540316191

DOWNLOAD EBOOK →

Since the dawn of computing, the quest for a better understanding of Nature has been a driving force for technological development. Groundbreaking achievements by great scientists have paved the way from the abacus to the supercomputing power of today. When trying to replicate Nature in the computer’s silicon test tube, there is need for precise and computable process descriptions. The scienti?c ?elds of Ma- ematics and Physics provide a powerful vehicle for such descriptions in terms of Partial Differential Equations (PDEs). Formulated as such equations, physical laws can become subject to computational and analytical studies. In the computational setting, the equations can be discreti ed for ef?cient solution on a computer, leading to valuable tools for simulation of natural and man-made processes. Numerical so- tion of PDE-based mathematical models has been an important research topic over centuries, and will remain so for centuries to come. In the context of computer-based simulations, the quality of the computed results is directly connected to the model’s complexity and the number of data points used for the computations. Therefore, computational scientists tend to ?ll even the largest and most powerful computers they can get access to, either by increasing the si e of the data sets, or by introducing new model terms that make the simulations more realistic, or a combination of both. Today, many important simulation problems can not be solved by one single computer, but calls for parallel computing.

Multigrid Methods

Multigrid Methods PDF

Author: Ulrich Trottenberg

Publisher: Academic Press

Published: 2001

Total Pages: 652

ISBN-13: 9780127010700

DOWNLOAD EBOOK →

Mathematics of Computing -- Numerical Analysis.

Multigrid Methods III

Multigrid Methods III PDF

Author: HACKBUSCH

Publisher: Birkhäuser

Published: 2013-11-22

Total Pages: 394

ISBN-13: 3034857128

DOWNLOAD EBOOK →

These proceedings contain a selection of papers presented at the Third European Conference on Multigrid Methods which was held in Bonn on October 1-4, 1990. Following conferences in 1981 and 1985, a platform for the presentation of new Multigrid results was provided for a third time. Multigrid methods no longer have problems being accepted by numerical analysts and users of numerical methods; on the contrary, they have been further developed in such a successful way that they have penetrated a variety of new fields of application. The high number of 154 participants from 18 countries and 76 presented papers show the need to continue the series of the European Multigrid Conferences. The papers of this volume give a survey on the current Multigrid situation; in particular, they correspond to those fields where new developments can be observed. For example, se veral papers study the appropriate treatment of time dependent problems. Improvements can also be noticed in the Multigrid approach for semiconductor equations. The field of parallel Multigrid variants, having been started at the second European Multigrid Conference, is now at the centre of interest.

Matrix Computations

Matrix Computations PDF

Author: Gene H. Golub

Publisher: JHU Press

Published: 2013-02-15

Total Pages: 781

ISBN-13: 1421407949

DOWNLOAD EBOOK →

This revised edition provides the mathematical background and algorithmic skills required for the production of numerical software. It includes rewritten and clarified proofs and derivations, as well as new topics such as Arnoldi iteration, and domain decomposition methods.