Mathematics of Quantization and Quantum Fields

Mathematics of Quantization and Quantum Fields PDF

Author: Jan Dereziński

Publisher: Cambridge University Press

Published: 2013-03-07

Total Pages: 687

ISBN-13: 1107011116

DOWNLOAD EBOOK →

A unique and definitive review of mathematical aspects of quantization and quantum field theory for graduate students and researchers.

Geometric Quantization and Quantum Mechanics

Geometric Quantization and Quantum Mechanics PDF

Author: Jedrzej Sniatycki

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 241

ISBN-13: 1461260663

DOWNLOAD EBOOK →

This book contains a revised and expanded version of the lecture notes of two seminar series given during the academic year 1976/77 at the Department of Mathematics and Statistics of the University of Calgary, and in the summer of 1978 at the Institute of Theoretical Physics of the Technical University Clausthal. The aim of the seminars was to present geometric quantization from the point of view· of its applica tions to quantum mechanics, and to introduce the quantum dynamics of various physical systems as the result of the geometric quantization of the classical dynamics of these systems. The group representation aspects of geometric quantiza tion as well as proofs of the existence and the uniqueness of the introduced structures can be found in the expository papers of Blattner, Kostant, Sternberg and Wolf, and also in the references quoted in these papers. The books of Souriau (1970) and Simms and Woodhouse (1976) present the theory of geometric quantization and its relationship to quantum mech anics. The purpose of the present book is to complement the preceding ones by including new developments of the theory and emphasizing the computations leading to results in quantum mechanics.

Mathematical Aspects of Quantum Field Theory

Mathematical Aspects of Quantum Field Theory PDF

Author: Edson de Faria

Publisher: Cambridge University Press

Published: 2010-08-12

Total Pages:

ISBN-13: 1139489801

DOWNLOAD EBOOK →

Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.

Quantum Fields and Strings: A Course for Mathematicians

Quantum Fields and Strings: A Course for Mathematicians PDF

Author: Pierre Deligne

Publisher: American Mathematical Society

Published: 1999-10-25

Total Pages: 801

ISBN-13: 0821820133

DOWNLOAD EBOOK →

A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.

Quantum Field Theory

Quantum Field Theory PDF

Author: G. B. Folland

Publisher: American Mathematical Soc.

Published: 2008-08-26

Total Pages: 338

ISBN-13: 0821847058

DOWNLOAD EBOOK →

Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theory, with emphasis on quantum electrodynamics. The final two chapters present the functional integral approach and the elements of gauge field theory, including the Salam-Weinberg model of electromagnetic and weak interactions.

Quantization, Classical and Quantum Field Theory and Theta Functions

Quantization, Classical and Quantum Field Theory and Theta Functions PDF

Author: Andrej Tyurin

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 150

ISBN-13: 0821832409

DOWNLOAD EBOOK →

This book is written by a well-known expert in classical algebraic geometry. Tyurin's research was specifically in explicit computations to vector bundles on algebraic varieties. This is the only available monograph written from his unique viewpoint. Ordinary (abelian) theta functions describe properties of moduli spaces of one-dimensional vector bundles on algebraic curves. Non-abelian theta functions, which are the main topic of this book, play a similar role in the study of higher-dimensional vector bundles. The book presents various aspects of the theory of non-abelian theta functions and the moduli spaces of vector bundles, including their applications to problems of quantization and to classical and quantum conformal field theories. The book is an important source of information for specialists in algebraic geometry and its applications to mathematical aspects of quantum field theory.

Mathematical Aspects of Quantum Field Theories

Mathematical Aspects of Quantum Field Theories PDF

Author: Damien Calaque

Publisher: Springer

Published: 2015-01-06

Total Pages: 572

ISBN-13: 3319099493

DOWNLOAD EBOOK →

Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homology and factorization algebras.

Towards the Mathematics of Quantum Field Theory

Towards the Mathematics of Quantum Field Theory PDF

Author: Frédéric Paugam

Publisher: Springer Science & Business Media

Published: 2014-02-20

Total Pages: 485

ISBN-13: 3319045644

DOWNLOAD EBOOK →

This ambitious and original book sets out to introduce to mathematicians (even including graduate students ) the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in use. This in turn promotes the interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, though mathematicians are the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second part presents a large family of examples of classical field theories, both from experimental and theoretical physics, while the third part provides an introduction to quantum field theory, presents various renormalization methods, and discusses the quantization of factorization algebras.

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics PDF

Author: Alexander Cardona

Publisher: Springer

Published: 2017-10-26

Total Pages: 341

ISBN-13: 3319654276

DOWNLOAD EBOOK →

This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.