Mathematics and the Physical World

Mathematics and the Physical World PDF

Author: Morris Kline

Publisher: Courier Corporation

Published: 2012-03-15

Total Pages: 514

ISBN-13: 0486136310

DOWNLOAD EBOOK →

Stimulating account of development of mathematics from arithmetic, algebra, geometry and trigonometry, to calculus, differential equations, and non-Euclidean geometries. Also describes how math is used in optics, astronomy, and other phenomena.

The Physical World

The Physical World PDF

Author: Nicholas Manton

Publisher: Oxford University Press

Published: 2017

Total Pages: 573

ISBN-13: 0198795939

DOWNLOAD EBOOK →

"It is over half a century since The Feynman lectures on physics were published. A new authoritative account of fundamental physics covering all branches of the subject is now well overdue. The physical world has been written to satisfy this need."--Back cover.

Our Mathematical Universe

Our Mathematical Universe PDF

Author: Max Tegmark

Publisher: Vintage

Published: 2015-02-03

Total Pages: 434

ISBN-13: 0307744256

DOWNLOAD EBOOK →

Max Tegmark leads us on an astonishing journey through past, present and future, and through the physics, astronomy and mathematics that are the foundation of his work, most particularly his hypothesis that our physical reality is a mathematical structure and his theory of the ultimate multiverse. In a dazzling combination of both popular and groundbreaking science, he not only helps us grasp his often mind-boggling theories, but he also shares with us some of the often surprising triumphs and disappointments that have shaped his life as a scientist. Fascinating from first to last—this is a book that has already prompted the attention and admiration of some of the most prominent scientists and mathematicians.

Topics in Physical Mathematics

Topics in Physical Mathematics PDF

Author: Kishore Marathe

Publisher: Springer Science & Business Media

Published: 2010-08-09

Total Pages: 458

ISBN-13: 1848829396

DOWNLOAD EBOOK →

As many readers will know, the 20th century was a time when the fields of mathematics and the sciences were seen as two separate entities. Caused by the rapid growth of the physical sciences and an increasing abstraction in mathematical research, each party, physicists and mathematicians alike, suffered a misconception; not only of the opposition’s theoretical underpinning, but of how the two subjects could be intertwined and effectively utilized. One sub-discipline that played a part in the union of the two subjects is Theoretical Physics. Breaking it down further came the fundamental theories, Relativity and Quantum theory, and later on Yang-Mills theory. Other areas to emerge in this area are those derived from the works of Donaldson, Chern-Simons, Floer-Fukaya, and Seiberg-Witten. Aimed at a wide audience, Physical Topics in Mathematics demonstrates how various physical theories have played a crucial role in the developments of Mathematics and in particular, Geometric Topology. Issues are studied in great detail, and the book steadfastly covers the background of both Mathematics and Theoretical Physics in an effort to bring the reader to a deeper understanding of their interaction. Whilst the world of Theoretical Physics and Mathematics is boundless; it is not the intention of this book to cover its enormity. Instead, it seeks to lead the reader through the world of Physical Mathematics; leaving them with a choice of which realm they wish to visit next.

Mathematics in Western Culture

Mathematics in Western Culture PDF

Author: Morris Kline

Publisher: Oxford University Press

Published: 1964-12-31

Total Pages: 513

ISBN-13: 0195345452

DOWNLOAD EBOOK →

This book gives a remarkably fine account of the influences mathematics has exerted on the development of philosophy, the physical sciences, religion, and the arts in Western life.

Are Numbers Real?

Are Numbers Real? PDF

Author: Brian Clegg

Publisher: Macmillan

Published: 2016-12-06

Total Pages: 303

ISBN-13: 1250081041

DOWNLOAD EBOOK →

Presents an accessible, in-depth look at the history of numbers and their applications in life and science, from math's surreal presence in the virtual world to the debates about the role of math in science.

Mathematics and the Natural Sciences

Mathematics and the Natural Sciences PDF

Author: Francis Bailly

Publisher: World Scientific

Published: 2011-03-04

Total Pages: 336

ISBN-13: 1908977795

DOWNLOAD EBOOK →

This book identifies the organizing concepts of physical and biological phenomena by an analysis of the foundations of mathematics and physics. Our aim is to propose a dialog between different conceptual universes and thus to provide a unification of phenomena. The role of “order” and symmetries in the foundations of mathematics is linked to the main invariants and principles, among them the geodesic principle (a consequence of symmetries), which govern and confer unity to various physical theories. Moreover, an attempt is made to understand causal structures, a central element of physical intelligibility, in terms of both symmetries and symmetry breakings. A distinction between the principles of (conceptual) construction and of proofs, both in physics and in mathematics, guides most of the work. The importance of mathematical tools is also highlighted to clarify differences in the models for physics and biology that are proposed by continuous and discrete mathematics, such as computational simulations. Since biology is particularly complex and not as well understood at a theoretical level, we propose a “unification by concepts” which in any case should precede mathematization. This constitutes an outline for unification also based on highlighting conceptual differences, complex points of passage and technical irreducibilities of one field to another. Indeed, we suppose here a very common monist point of view, namely the view that living objects are “big bags of molecules”. The main question though is to understand which “theory” can help better understand these bags of molecules. They are, indeed, rather “singular”, from the physical point of view. Technically, we express this singularity through the concept of “extended criticality”, which provides a logical extension of the critical transitions that are known in physics. The presentation is mostly kept at an informal and conceptual level. Contents:Mathematical Concepts and Physical ObjectsIncompleteness and Indetermination in Mathematics and PhysicsSpace and Time from Physics to BiologyInvariances, Symmetries, and Symmetry BreakingsCauses and Symmetries: The Continuum and the Discrete in Mathematical ModelingExtended Criticality: The Physical Singularity of Life PhenomenaRandomness and Determination in the Interplay between the Continuum and the DiscreteConclusion: Unification and Separation of Theories, or the Importance of Negative Results Readership: Graduate students and professionals in the fields of natural sciences, biology, computer science, mathematics, and physics. Keywords:Foundations of Mathematics and of Physics;Epistemology;Theoretical BiologyKey Features:This book is an epistemological reflection carried out by two working scientists, a physicist and a mathematician, who focus on biology. They first address a comparative analysis of the founding principles of their own disciplines. On the grounds of a three-fold blend, they then introduce a unique proposal, which does not passively transfer the paradigms of the first two theoretically well-established disciplines, to suggest a novel theoretical framework for the third discipline

The World as a Mathematical Game

The World as a Mathematical Game PDF

Author: Giorgio Israel

Publisher: Springer Science & Business Media

Published: 2009-04-24

Total Pages: 215

ISBN-13: 3764398965

DOWNLOAD EBOOK →

Galileo and Newton’s work towards the mathematisation of the physical world; Leibniz’s universal logical calculus; the Enlightenment’s mathématique sociale. John von Neumann inherited all these aims and philosophical intuitions, together with an idea that grew up around the Vienna Circle of an ethics in the form of an exact science capable of guiding individuals to make correct decisions. With the help of his boundless mathematical capacity, von Neumann developed a conception of the world as a mathematical game, a world globally governed by a universal logic in which individual consciousness moved following different strategies: his vision guided him from set theory to quantum mechanics, to economics and to his theory of automata (anticipating artificial intelligence and cognitive science). This book provides the first comprehensive scientific and intellectual biography of John von Neumann, a man who perhaps more than any other is representative of twentieth century science.