Mathematical Models of Cancer and Different Therapies

Mathematical Models of Cancer and Different Therapies PDF

Author: Regina Padmanabhan

Publisher: Springer Nature

Published: 2020-10-31

Total Pages: 256

ISBN-13: 9811586403

DOWNLOAD EBOOK →

This book provides a unified framework for various currently available mathematical models that are used to analyze progression and regression in cancer development, and to predict its dynamics with respect to therapeutic interventions. Accurate and reliable model representations of cancer dynamics are milestones in the field of cancer research. Mathematical modeling approaches are becoming increasingly common in cancer research, as these quantitative approaches can help to validate hypotheses concerning cancer dynamics and thus elucidate the complexly interlaced mechanisms involved. Even though the related conceptual and technical information is growing at an exponential rate, the application of said information and realization of useful healthcare devices are lagging behind. In order to remedy this discrepancy, more interdisciplinary research works and course curricula need to be introduced in academic, industrial, and clinical organizations alike. To that end, this book reformulates most of the existing mathematical models as special cases of a general model, allowing readers to easily get an overall idea of cancer dynamics and its modeling. Moreover, the book will help bridge the gap between biologists and engineers, as it brings together cancer dynamics, the main steps involved in mathematical modeling, and control strategies developed for cancer management. This also allows readers in both medical and engineering fields to compare and contrast all the therapy-based models developed to date using a single source, and to identify unexplored research directions.

Mathematical Models of Cancer and Different Therapies

Mathematical Models of Cancer and Different Therapies PDF

Author: Regina Padmanabhan

Publisher:

Published: 2021

Total Pages: 0

ISBN-13: 9789811586415

DOWNLOAD EBOOK →

This book provides a unified framework for various currently available mathematical models that are used to analyze progression and regression in cancer development, and to predict its dynamics with respect to therapeutic interventions. Accurate and reliable model representations of cancer dynamics are milestones in the field of cancer research. Mathematical modeling approaches are becoming increasingly common in cancer research, as these quantitative approaches can help to validate hypotheses concerning cancer dynamics and thus elucidate the complexly interlaced mechanisms involved. Even though the related conceptual and technical information is growing at an exponential rate, the application of said information and realization of useful healthcare devices are lagging behind. In order to remedy this discrepancy, more interdisciplinary research works and course curricula need to be introduced in academic, industrial, and clinical organizations alike. To that end, this book reformulates most of the existing mathematical models as special cases of a general model, allowing readers to easily get an overall idea of cancer dynamics and its modeling. Moreover, the book will help bridge the gap between biologists and engineers, as it brings together cancer dynamics, the main steps involved in mathematical modeling, and control strategies developed for cancer management. This also allows readers in both medical and engineering fields to compare and contrast all the therapy-based models developed to date using a single source, and to identify unexplored research directions.

Optimal Control for Mathematical Models of Cancer Therapies

Optimal Control for Mathematical Models of Cancer Therapies PDF

Author: Heinz Schättler

Publisher: Springer

Published: 2015-09-15

Total Pages: 511

ISBN-13: 1493929720

DOWNLOAD EBOOK →

This book presents applications of geometric optimal control to real life biomedical problems with an emphasis on cancer treatments. A number of mathematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocols. The power of geometric methods is illustrated with fully worked out complete global solutions to these mathematically challenging problems. Elaborate constructions of optimal controls and corresponding system responses provide great examples of applications of the tools of geometric optimal control and the outcomes aid the design of simpler, practically realizable suboptimal protocols. The book blends mathematical rigor with practically important topics in an easily readable tutorial style. Graduate students and researchers in science and engineering, particularly biomathematics and more mathematical aspects of biomedical engineering, would find this book particularly useful.

An Introduction to Physical Oncology

An Introduction to Physical Oncology PDF

Author: Vittorio Cristini

Publisher: CRC Press

Published: 2017-06-26

Total Pages: 303

ISBN-13: 1315356880

DOWNLOAD EBOOK →

Physical oncology has the potential to revolutionize cancer research and treatment. The fundamental rationale behind this approach is that physical processes, such as transport mechanisms for drug molecules within tissue and forces exchanged by cancer cells with tissue, may play an equally important role as biological processes in influencing progression and treatment outcome. This book introduces the emerging field of physical oncology to a general audience, with a focus on recent breakthroughs that help in the design and discovery of more effective cancer treatments. It describes how novel mathematical models of physical transport processes incorporate patient tissue and imaging data routinely produced in the clinic to predict the efficacy of many cancer treatment approaches, including chemotherapy and radiation therapy. By helping to identify which therapies would be most beneficial for an individual patient, and quantifying their effects prior to actual implementation in the clinic, physical oncology allows doctors to design treatment regimens customized to each patient’s clinical needs, significantly altering the current clinical approach to cancer treatment and improving the outcomes for patients.

A Study On Mathematical Models For The Effect Of Different Therapies And Combination Of Therapies In Cancer Treatments

A Study On Mathematical Models For The Effect Of Different Therapies And Combination Of Therapies In Cancer Treatments PDF

Author: Lalitha R

Publisher: Independent Author

Published: 2023-03-31

Total Pages: 0

ISBN-13: 9781805251965

DOWNLOAD EBOOK →

Mathematical modeling is a great tool in the medical field. Mathematical models help to simulate the dynamics of complex systems. Dynamic models typically are represented by differential equations. Mathematical models are used everywhere in cancer research. The number of cancer cells in a tumor is not easy to calculate due to continuous changes in time. So may have to calculate with the help of differential equations easily. Challenge of mathematical modeling is to produce simplest possible model. Many of the researchers developed mathematical models that identify the most effective chemotherapeutic administration regimens using optimization and control techniques. In 1962 L.S. Pontryagin, etal. was developed the model for optimal control. A. Lotka and R. Fisher has been developed the mathematical theory life history evolution in 1970s. Panetta was developed an effective model for heterogeneous tumor and chemotherapeutic drug action in 1996. A.J.Coldman and J.M.Murray was developed the stochastic model of cancer treatment in 2000. L.G. de Pillis, etal. developed the system of ODE for variety of cancers and different treatments in between 2000 to 2013. In recent years so many authors developed them new models based on the above author's research. In recent years most of the people were affected by different types of cancer. Some type of cancer is the curable disease when we detect in early stage. Rare type of cancer is the not fully curable disease but to controls the tumor growth and gives assumption of survival for some years. There are different types of treatments are available according to their stage of the disease. Stages were defined from their tumor size and disease spreading position of their disease. Main treatments of cancers are Surgery, Chemotherapy, Radiation therapy, Immunotherapy, Gene therapy and Hormone therapy. Mathematical modeling of tumor dynamics and treatment responses can be applied to identify better drug administration regimes. Using mathematical model for tumor growth and cancer treatments we can reduce the tumor size. Now everyone must know about types of cancer and correct treatments for that. So select this area and developed the mathematical models for tumor dynamics and combinations of treatments. Collected the breast and colorectal cancer patient's details and fitted to our model then reduced the tumor burden. Also have find that which type of drug combinations are used for colorectal cancer and breast cancer treatments. Here we used Mathematical Tools are Differential Equation, Ordinary Differential Equation (ODE), Formulation of differential equation, Growth model, optimal control, Equilibrium and Stability Analysis in ODE.

Introduction to Mathematical Oncology

Introduction to Mathematical Oncology PDF

Author: Yang Kuang

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 472

ISBN-13: 1315361981

DOWNLOAD EBOOK →

Introduction to Mathematical Oncology presents biologically well-motivated and mathematically tractable models that facilitate both a deep understanding of cancer biology and better cancer treatment designs. It covers the medical and biological background of the diseases, modeling issues, and existing methods and their limitations. The authors introduce mathematical and programming tools, along with analytical and numerical studies of the models. They also develop new mathematical tools and look to future improvements on dynamical models. After introducing the general theory of medicine and exploring how mathematics can be essential in its understanding, the text describes well-known, practical, and insightful mathematical models of avascular tumor growth and mathematically tractable treatment models based on ordinary differential equations. It continues the topic of avascular tumor growth in the context of partial differential equation models by incorporating the spatial structure and physiological structure, such as cell size. The book then focuses on the recent active multi-scale modeling efforts on prostate cancer growth and treatment dynamics. It also examines more mechanistically formulated models, including cell quota-based population growth models, with applications to real tumors and validation using clinical data. The remainder of the text presents abundant additional historical, biological, and medical background materials for advanced and specific treatment modeling efforts. Extensively classroom-tested in undergraduate and graduate courses, this self-contained book allows instructors to emphasize specific topics relevant to clinical cancer biology and treatment. It can be used in a variety of ways, including a single-semester undergraduate course, a more ambitious graduate course, or a full-year sequence on mathematical oncology.

An Introduction to Physical Oncology

An Introduction to Physical Oncology PDF

Author: Vittorio Cristini

Publisher: CRC Press

Published: 2017-06-26

Total Pages: 204

ISBN-13: 1466551364

DOWNLOAD EBOOK →

Physical oncology has the potential to revolutionize cancer research and treatment. The fundamental rationale behind this approach is that physical processes, such as transport mechanisms for drug molecules within tissue and forces exchanged by cancer cells with tissue, may play an equally important role as biological processes in influencing progression and treatment outcome. This book introduces the emerging field of physical oncology to a general audience, with a focus on recent breakthroughs that help in the design and discovery of more effective cancer treatments. It describes how novel mathematical models of physical transport processes incorporate patient tissue and imaging data routinely produced in the clinic to predict the efficacy of many cancer treatment approaches, including chemotherapy and radiation therapy. By helping to identify which therapies would be most beneficial for an individual patient, and quantifying their effects prior to actual implementation in the clinic, physical oncology allows doctors to design treatment regimens customized to each patient’s clinical needs, significantly altering the current clinical approach to cancer treatment and improving the outcomes for patients.

Mathematical Models of Tumor-Immune System Dynamics

Mathematical Models of Tumor-Immune System Dynamics PDF

Author: Amina Eladdadi

Publisher: Springer

Published: 2014-11-06

Total Pages: 282

ISBN-13: 1493917935

DOWNLOAD EBOOK →

This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction between the immune system and a growing tumor. The multidimensional nature of these complex interactions requires a cross-disciplinary approach to capture more realistic dynamics of the essential biology. The papers presented in this volume explore these issues and the results will be of interest to graduate students and researchers in a variety of fields within mathematical and biological sciences.

Mathematical Models in Cancer Research,

Mathematical Models in Cancer Research, PDF

Author: T. E. Wheldon

Publisher: CRC Press

Published: 1988

Total Pages: 272

ISBN-13:

DOWNLOAD EBOOK →

Cancer research deals with all aspects of malignant transformation, tumour growth and the effects of treatment. Mathematical models enable quantitative representations of the changes affecting cell state and cell number. This book provides a review of the scope of mathematical modelling in cancer research, bringing together for the first time a group of related mathematical topics including multistage carcinogenesis, tumour growth kinetics, growth control, radiotherapy, chemotherapy and biological targeting in cancer treatment. Physicists and mathematicians interested in medical research, biomathematicians, biostatisticians, radiation and medical oncologists and experimental and theoretical biologists will welcome this critical review of mathematical modelling in cancer research. This book will also be of interest to clinicians, basic cancer scientists and physicists working in radiotherapy departments, and to postgraduate students on courses in oncology and subjects.

Optimal Control for Mathematical Models of Cancer Therapies

Optimal Control for Mathematical Models of Cancer Therapies PDF

Author: Heinz M. Schättler

Publisher:

Published: 2015

Total Pages:

ISBN-13: 9781493929733

DOWNLOAD EBOOK →

This book presents applications of geometric optimal control to real life biomedical problems with an emphasis on cancer treatments. A number of mathematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocols. The power of geometric methods is illustrated with fully worked out complete global solutions to these mathematically challenging problems. Elaborate constructions of optimal controls and corresponding system responses provide great examples of applications of the tools of geometric optimal control and the outcomes aid the design of simpler, practically realizable suboptimal protocols. The book blends mathematical rigor with practically important topics in an easily readable tutorial style. Graduate students and researchers in science and engineering, particularly biomathematics and more mathematical aspects of biomedical engineering, would find this book particularly useful.