Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging PDF

Author: Otmar Scherzer

Publisher: Springer Science & Business Media

Published: 2010-11-23

Total Pages: 1626

ISBN-13: 0387929193

DOWNLOAD EBOOK →

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Mathematical Methods in Tomography

Mathematical Methods in Tomography PDF

Author: Gabor T. Herman

Publisher: Springer

Published: 2006-11-14

Total Pages: 279

ISBN-13: 3540466150

DOWNLOAD EBOOK →

The conference was devoted to the discussion of present and future techniques in medical imaging, including 3D x-ray CT, ultrasound and diffraction tomography, and biomagnetic ima- ging. The mathematical models, their theoretical aspects and the development of algorithms were treated. The proceedings contains surveys on reconstruction in inverse obstacle scat- tering, inversion in 3D, and constrained least squares pro- blems.Research papers include besides the mentioned imaging techniques presentations on image reconstruction in Hilbert spaces, singular value decompositions, 3D cone beam recon- struction, diffuse tomography, regularization of ill-posed problems, evaluation reconstruction algorithms and applica- tions in non-medical fields. Contents: Theoretical Aspects: J.Boman: Helgason' s support theorem for Radon transforms-a newproof and a generalization -P.Maass: Singular value de- compositions for Radon transforms- W.R.Madych: Image recon- struction in Hilbert space -R.G.Mukhometov: A problem of in- tegral geometry for a family of rays with multiple reflec- tions -V.P.Palamodov: Inversion formulas for the three-di- mensional ray transform - Medical Imaging Techniques: V.Friedrich: Backscattered Photons - are they useful for a surface - near tomography - P.Grangeat: Mathematical frame- work of cone beam 3D reconstruction via the first derivative of the Radon transform -P.Grassin,B.Duchene,W.Tabbara: Dif- fraction tomography: some applications and extension to 3D ultrasound imaging -F.A.Gr}nbaum: Diffuse tomography: a re- fined model -R.Kress,A.Zinn: Three dimensional reconstruc- tions in inverse obstacle scattering -A.K.Louis: Mathemati- cal questions of a biomagnetic imaging problem - Inverse Problems and Optimization: Y.Censor: On variable block algebraic reconstruction techniques -P.P.Eggermont: On Volterra-Lotka differential equations and multiplicative algorithms for monotone complementary problems

Mathematical Methods in Image Reconstruction

Mathematical Methods in Image Reconstruction PDF

Author: Frank Natterer

Publisher: SIAM

Published: 2001-01-01

Total Pages: 228

ISBN-13: 9780898718324

DOWNLOAD EBOOK →

This book describes the state of the art of the mathematical theory and numerical analysis of imaging. Some of the applications covered in the book include computerized tomography, magnetic resonance imaging, emission tomography, electron microscopy, ultrasound transmission tomography, industrial tomography, seismic tomography, impedance tomography, and NIR imaging.

Introduction to the Mathematics of Medical Imaging

Introduction to the Mathematics of Medical Imaging PDF

Author: Charles L. Epstein

Publisher: SIAM

Published: 2008-01-01

Total Pages: 794

ISBN-13: 9780898717792

DOWNLOAD EBOOK →

At the heart of every medical imaging technology is a sophisticated mathematical model of the measurement process and an algorithm to reconstruct an image from the measured data. This book provides a firm foundation in the mathematical tools used to model the measurements and derive the reconstruction algorithms used in most of these modalities. The text uses X-ray computed tomography (X-ray CT) as a 'pedagogical machine' to illustrate important ideas and its extensive discussion of background material makes the more advanced mathematical topics accessible to people with a less formal mathematical education. This new edition contains a chapter on magnetic resonance imaging (MRI), a revised section on the relationship between the continuum and discrete Fourier transforms, an improved description of the gridding method, and new sections on both Grangreat's formula and noise analysis in MR-imaging. Mathematical concepts are illuminated with over 200 illustrations and numerous exercises.

Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging PDF

Author: Otmar Scherzer

Publisher: Springer

Published: 2015-05-30

Total Pages: 0

ISBN-13: 9781493907892

DOWNLOAD EBOOK →

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. This expanded and revised second edition contains updates to existing chapters and 16 additional entries on important mathematical methods such as graph cuts, morphology, discrete geometry, PDEs, conformal methods, to name a few. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 200 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Mathematical Methods in Tomography

Mathematical Methods in Tomography PDF

Author: Gabor T. Herman

Publisher: Springer

Published: 1991

Total Pages: 292

ISBN-13:

DOWNLOAD EBOOK →

The conference was devoted to the discussion of present and future techniques in medical imaging, including 3D x-ray CT, ultrasound and diffraction tomography, and biomagnetic ima- ging. The mathematical models, their theoretical aspects and the development of algorithms were treated. The proceedings contains surveys on reconstruction in inverse obstacle scat- tering, inversion in 3D, and constrained least squares pro- blems.Research papers include besides the mentioned imaging techniques presentations on image reconstruction in Hilbert spaces, singular value decompositions, 3D cone beam recon- struction, diffuse tomography, regularization of ill-posed problems, evaluation reconstruction algorithms and applica- tions in non-medical fields. Contents: Theoretical Aspects: J.Boman: Helgason' s support theorem for Radon transforms-a newproof and a generalization -P.Maass: Singular value de- compositions for Radon transforms- W.R.Madych: Image recon- struction in Hilbert space -R.G.Mukhometov: A problem of in- tegral geometry for a family of rays with multiple reflec- tions -V.P.Palamodov: Inversion formulas for the three-di- mensional ray transform - Medical Imaging Techniques: V.Friedrich: Backscattered Photons - are they useful for a surface - near tomography - P.Grangeat: Mathematical frame- work of cone beam 3D reconstruction via the first derivative of the Radon transform -P.Grassin,B.Duchene,W.Tabbara: Dif- fraction tomography: some applications and extension to 3D ultrasound imaging -F.A.Gr}nbaum: Diffuse tomography: a re- fined model -R.Kress,A.Zinn: Three dimensional reconstruc- tions in inverse obstacle scattering -A.K.Louis: Mathemati- cal questions of a biomagnetic imaging problem - Inverse Problems and Optimization: Y.Censor: On variable block algebraic reconstruction techniques -P.P.Eggermont: On Volterra-Lotka differential equations and multiplicative algorithms for monotone complementary problems.

Mathematical and Statistical Methods for Multistatic Imaging

Mathematical and Statistical Methods for Multistatic Imaging PDF

Author: Habib Ammari

Publisher: Springer

Published: 2013-11-29

Total Pages: 366

ISBN-13: 3319025856

DOWNLOAD EBOOK →

This book covers recent mathematical, numerical, and statistical approaches for multistatic imaging of targets with waves at single or multiple frequencies. The waves can be acoustic, elastic or electromagnetic. They are generated by point sources on a transmitter array and measured on a receiver array. An important problem in multistatic imaging is to quantify and understand the trade-offs between data size, computational complexity, signal-to-noise ratio, and resolution. Another fundamental problem is to have a shape representation well suited to solving target imaging problems from multistatic data. In this book the trade-off between resolution and stability when the data are noisy is addressed. Efficient imaging algorithms are provided and their resolution and stability with respect to noise in the measurements analyzed. It also shows that high-order polarization tensors provide an accurate representation of the target. Moreover, a dictionary-matching technique based on new invariants for the generalized polarization tensors is introduced. Matlab codes for the main algorithms described in this book are provided. Numerical illustrations using these codes in order to highlight the performance and show the limitations of numerical approaches for multistatic imaging are presented.