Mathematical Methods for Wave Phenomena

Mathematical Methods for Wave Phenomena PDF

Author: Norman Bleistein

Publisher: Academic Press

Published: 2012-12-02

Total Pages: 360

ISBN-13: 0080916953

DOWNLOAD EBOOK →

Computer Science and Applied Mathematics: Mathematical Methods for Wave Phenomena focuses on the methods of applied mathematics, including equations, wave fronts, boundary value problems, and scattering problems. The publication initially ponders on first-order partial differential equations, Dirac delta function, Fourier transforms, asymptotics, and second-order partial differential equations. Discussions focus on prototype second-order equations, asymptotic expansions, asymptotic expansions of Fourier integrals with monotonic phase, method of stationary phase, propagation of wave fronts, and variable index of refraction. The text then examines wave equation in one space dimension, as well as initial boundary value problems, characteristics for the wave equation in one space dimension, and asymptotic solution of the Klein-Gordon equation. The manuscript offers information on wave equation in two and three dimensions and Helmholtz equation and other elliptic equations. Topics include energy integral, domain of dependence, and uniqueness, scattering problems, Green's functions, and problems in unbounded domains and the Sommerfeld radiation condition. The asymptotic techniques for direct scattering problems and the inverse methods for reflector imaging are also elaborated. The text is a dependable reference for computer science experts and mathematicians pursuing studies on the mathematical methods of wave phenomena.

Mathematics of Wave Phenomena

Mathematics of Wave Phenomena PDF

Author: Willy Dörfler

Publisher: Springer Nature

Published: 2020-10-01

Total Pages: 330

ISBN-13: 3030471748

DOWNLOAD EBOOK →

Wave phenomena are ubiquitous in nature. Their mathematical modeling, simulation and analysis lead to fascinating and challenging problems in both analysis and numerical mathematics. These challenges and their impact on significant applications have inspired major results and methods about wave-type equations in both fields of mathematics. The Conference on Mathematics of Wave Phenomena 2018 held in Karlsruhe, Germany, was devoted to these topics and attracted internationally renowned experts from a broad range of fields. These conference proceedings present new ideas, results, and techniques from this exciting research area.

Wave Phenomena

Wave Phenomena PDF

Author: Lui Lam

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 281

ISBN-13: 1461388562

DOWNLOAD EBOOK →

IJ:1 June of 1987 the Center for Applied Mathematics and Computer Science at San Jose State University received a bequest of over half a million dollars from the estate of Mrs. Marie Woodward. In the opening article of this collection of papers Jane Day, the founder of the Center, describes the background that led to this gift. In recognition of the bequest it was decided that a series of Woodward Conferences be established. The First Woodward Conference took place at San Jose State University on June 2-3 1988. The themes of the conference were the Theoretical, Computational and Practical Aspects of Wave Phenomena and these same themes have been used to divide the contributions to this volume. Part I is concerned with papers on theoretical aspects. This section includes papers on pseudo-differential operator techniques, inverse problems and the mathematical foundations of wave propagation in random media. Part II consists of papers that involve significant amounts of computation. Included are papers on the Fast Hartley Transform, computational algorithms for electromagnetic scattering problems, and nonlinear wave interaction problems in fluid mechanics. vi Part III contains papers with a genuine physics flavor. This final section illustrates the widespread importance of wave phenomena in physics. Among the phenomena considered are waves in the atmosphere, viscous fingering in liquid crystals, solitons and wave localization.

Identification Problems of Wave Phenomena

Identification Problems of Wave Phenomena PDF

Author: A. Lorenzi

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2014-07-24

Total Pages: 352

ISBN-13: 3110943298

DOWNLOAD EBOOK →

The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

Wave Phenomena

Wave Phenomena PDF

Author: Willy Dörfler

Publisher: Springer Nature

Published: 2023-03-30

Total Pages: 368

ISBN-13: 3031057937

DOWNLOAD EBOOK →

This book presents the notes from the seminar on wave phenomena given in 2019 at the Mathematical Research Center in Oberwolfach. The research on wave-type problems is a fascinating and emerging field in mathematical research with many challenging applications in sciences and engineering. Profound investigations on waves require a strong interaction of several mathematical disciplines including functional analysis, partial differential equations, mathematical modeling, mathematical physics, numerical analysis, and scientific computing. The goal of this book is to present a comprehensive introduction to the research on wave phenomena. Starting with basic models for acoustic, elastic, and electro-magnetic waves, topics such as the existence of solutions for linear and some nonlinear material laws, efficient discretizations and solution methods in space and time, and the application to inverse parameter identification problems are covered. The aim of this book is to intertwine analysis and numerical mathematics for wave-type problems promoting thus cooperative research projects in this field.

Applied Wave Mathematics II

Applied Wave Mathematics II PDF

Author: Arkadi Berezovski

Publisher: Springer Nature

Published: 2019-11-16

Total Pages: 376

ISBN-13: 3030299511

DOWNLOAD EBOOK →

This book gathers contributions on various aspects of the theory and applications of linear and nonlinear waves and associated phenomena, as well as approaches developed in a global partnership of researchers with the national Centre of Excellence in Nonlinear Studies (CENS) at the Department of Cybernetics of Tallinn University of Technology in Estonia. The papers chiefly focus on the role of mathematics in the analysis of wave phenomena. They highlight the complexity of related topics concerning wave generation, propagation, transformation and impact in solids, gases, fluids and human tissues, while also sharing insights into selected mathematical methods for the analytical and numerical treatment of complex phenomena. In addition, the contributions derive advanced mathematical models, share innovative ideas on computing, and present novel applications for a number of research fields where both linear and nonlinear wave problems play an important role. The papers are written in a tutorial style, intended for non-specialist researchers and students. The authors first describe the basics of a problem that is currently of interest in the scientific community, discuss the state of the art in related research, and then share their own experiences in tackling the problem. Each chapter highlights the importance of applied mathematics for central issues in the study of waves and associated complex phenomena in different media. The topics range from basic principles of wave mechanics up to the mathematics of Planet Earth in the broadest sense, including contemporary challenges in the mathematics of society. In turn, the areas of application range from classic ocean wave mathematics to material science, and to human nerves and tissues. All contributions describe the approaches in a straightforward manner, making them ideal material for educational purposes, e.g. for courses, master class lectures, or seminar presentations.

Hyperbolic Partial Differential Equations and Wave Phenomena

Hyperbolic Partial Differential Equations and Wave Phenomena PDF

Author: Mitsuru Ikawa

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 218

ISBN-13: 9780821810217

DOWNLOAD EBOOK →

The familiar wave equation is the most fundamental hyperbolic partial differential equation. Other hyperbolic equations, both linear and nonlinear, exhibit many wave-like phenomena. The primary theme of this book is the mathematical investigation of such wave phenomena. The exposition begins with derivations of some wave equations, including waves in an elastic body, such as those observed in connection with earthquakes. Certain existence results are proved early on, allowing the later analysis to concentrate on properties of solutions. The existence of solutions is established using methods from functional analysis. Many of the properties are developed using methods of asymptotic solutions. The last chapter contains an analysis of the decay of the local energy of solutions. This analysis shows, in particular, that in a connected exterior domain, disturbances gradually drift into the distance and the effect of a disturbance in a bounded domain becomes small after sufficient time passes. The book is geared toward a wide audience interested in PDEs. Prerequisite to the text are some real analysis and elementary functional analysis. It would be suitable for use as a text in PDEs or mathematical physics at the advanced undergraduate and graduate level.

Wave Propagation in Electromagnetic Media

Wave Propagation in Electromagnetic Media PDF

Author: Julian L. Davis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 303

ISBN-13: 1461232848

DOWNLOAD EBOOK →

This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical tech niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli cations to electromagnetic wave propagation under a variety of conditions.

Mathematical Modelling of Wave Phenomena

Mathematical Modelling of Wave Phenomena PDF

Author: Börje Nilsson

Publisher: American Institute of Physics

Published: 2006-05-12

Total Pages: 406

ISBN-13:

DOWNLOAD EBOOK →

This conference series intends to illuminate the relationship between different types of waves. This second conference focused primarily on classical wave modeling of acoustic waves in solids and fluids, electromagnetic waves, as well as elastic wave modeling, and both direct and inverse problems are addressed. Topics included are: (1) Classical linear wave propagation modeling, analysis and computation: general, electromagnetic applications, acoustics of fluids, acoustics of solids; (2) classical nonlinear wave propagation modeling, analysis, and computation; (3) inverse scattering modeling: gneral and electromagnetic imaging, wood imaging, seismic imaging; (4) quantum and statistical mechanics; (5) signal processing and analysis.

Wave Propagation in Solids and Fluids

Wave Propagation in Solids and Fluids PDF

Author: Julian L. Davis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 396

ISBN-13: 1461238862

DOWNLOAD EBOOK →

The purpose of this volume is to present a clear and systematic account of the mathematical methods of wave phenomena in solids, gases, and water that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical techniques, and on showing how these mathematical concepts can be effective in unifying the physics of wave propagation in a variety of physical settings: sound and shock waves in gases, water waves, and stress waves in solids. Nonlinear effects and asymptotic phenomena will be discussed. Wave propagation in continuous media (solid, liquid, or gas) has as its foundation the three basic conservation laws of physics: conservation of mass, momentum, and energy, which will be described in various sections of the book in their proper physical setting. These conservation laws are expressed either in the Lagrangian or the Eulerian representation depending on whether the boundaries are relatively fixed or moving. In any case, these laws of physics allow us to derive the "field equations" which are expressed as systems of partial differential equations. For wave propagation phenomena these equations are said to be "hyperbolic" and, in general, nonlinear in the sense of being "quasi linear" . We therefore attempt to determine the properties of a system of "quasi linear hyperbolic" partial differential equations which will allow us to calculate the displacement, velocity fields, etc.