Mathematical Geophysics

Mathematical Geophysics PDF

Author: Jean-Yves Chemin

Publisher: Oxford University Press on Demand

Published: 2006-04-13

Total Pages: 263

ISBN-13: 019857133X

DOWNLOAD EBOOK →

Aimed at graduate students and researchers in mathematics, engineering, oceanography, meteorology and mechanics, this text provides a detailed introduction to the physical theory of rotating fluids, a significant part of geophysical fluid dynamics. The Navier-Stokes equations are examined in both incompressible and rapidly rotating forms.

Mathematical Methods for Geophysics and Space Physics

Mathematical Methods for Geophysics and Space Physics PDF

Author: William I. Newman

Publisher: Princeton University Press

Published: 2016-05-03

Total Pages: 266

ISBN-13: 0691170606

DOWNLOAD EBOOK →

An essential textbook on the mathematical methods used in geophysics and space physics Graduate students in the natural sciences—including not only geophysics and space physics but also atmospheric and planetary physics, ocean sciences, and astronomy—need a broad-based mathematical toolbox to facilitate their research. In addition, they need to survey a wider array of mathematical methods that, while outside their particular areas of expertise, are important in related ones. While it is unrealistic to expect them to develop an encyclopedic knowledge of all the methods that are out there, they need to know how and where to obtain reliable and effective insights into these broader areas. Here at last is a graduate textbook that provides these students with the mathematical skills they need to succeed in today's highly interdisciplinary research environment. This authoritative and accessible book covers everything from the elements of vector and tensor analysis to ordinary differential equations, special functions, and chaos and fractals. Other topics include integral transforms, complex analysis, and inverse theory; partial differential equations of mathematical geophysics; probability, statistics, and computational methods; and much more. Proven in the classroom, Mathematical Methods for Geophysics and Space Physics features numerous exercises throughout as well as suggestions for further reading. Provides an authoritative and accessible introduction to the subject Covers vector and tensor analysis, ordinary differential equations, integrals and approximations, Fourier transforms, diffusion and dispersion, sound waves and perturbation theory, randomness in data, and a host of other topics Features numerous exercises throughout Ideal for students and researchers alike An online illustration package is available to professors

Mathematical Geophysics

Mathematical Geophysics PDF

Author: N.J. Vlaar

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 410

ISBN-13: 9400928572

DOWNLOAD EBOOK →

The contributions to this book follow a topical trend. In several geophysical fields evidence is accumulating concerning the deviation of the earth's structure from radial symmetry. Seismology provides the most adequate resolution for revealing the earth's lateral inhomogeneity on a global to local scale. Lateral structure in the density distribution is also manifest in the earth's gravity field and in the geoid. Asphericity in physical parameters, generally supposed only to vary with the vertical coordinate, has a profound influence on geodynamics. The effects of these deviations from spherical symmetry concern in particular convection theory, post-glacial rebound and the dynamics of the lithosphere and upper mantle in general. At the 16th International Conference on Mathematical Geophysics which was held in Oosterbeek, the Netherlands, in 1986, the need was felt to present the state of the art. Several prospective authors were found interested to contribute to the present book. This Oosterbeek conference was one in a long series of topical conferences starting with the Upper Mantle Project Symposia on Geophysical Theory and Computers in the 1960s, and thence their successors, the conferences on Mathematical Geophysics, until the present.

Mathematical Methods for Geophysics and Space Physics

Mathematical Methods for Geophysics and Space Physics PDF

Author: William I. Newman

Publisher: Princeton University Press

Published: 2016-05-03

Total Pages: 266

ISBN-13: 0691170606

DOWNLOAD EBOOK →

An essential textbook on the mathematical methods used in geophysics and space physics Graduate students in the natural sciences—including not only geophysics and space physics but also atmospheric and planetary physics, ocean sciences, and astronomy—need a broad-based mathematical toolbox to facilitate their research. In addition, they need to survey a wider array of mathematical methods that, while outside their particular areas of expertise, are important in related ones. While it is unrealistic to expect them to develop an encyclopedic knowledge of all the methods that are out there, they need to know how and where to obtain reliable and effective insights into these broader areas. Here at last is a graduate textbook that provides these students with the mathematical skills they need to succeed in today's highly interdisciplinary research environment. This authoritative and accessible book covers everything from the elements of vector and tensor analysis to ordinary differential equations, special functions, and chaos and fractals. Other topics include integral transforms, complex analysis, and inverse theory; partial differential equations of mathematical geophysics; probability, statistics, and computational methods; and much more. Proven in the classroom, Mathematical Methods for Geophysics and Space Physics features numerous exercises throughout as well as suggestions for further reading. Provides an authoritative and accessible introduction to the subject Covers vector and tensor analysis, ordinary differential equations, integrals and approximations, Fourier transforms, diffusion and dispersion, sound waves and perturbation theory, randomness in data, and a host of other topics Features numerous exercises throughout Ideal for students and researchers alike An online illustration package is available to professors

Encyclopedia of Mathematical Geosciences

Encyclopedia of Mathematical Geosciences PDF

Author: B. S. Daya Sagar

Publisher: Springer Nature

Published: 2023-07-13

Total Pages: 1744

ISBN-13: 3030850404

DOWNLOAD EBOOK →

The Encyclopedia of Mathematical Geosciences is a complete and authoritative reference work. It provides concise explanation on each term that is related to Mathematical Geosciences. Over 300 international scientists, each expert in their specialties, have written around 350 separate articles on different topics of mathematical geosciences including contributions on Artificial Intelligence, Big Data, Compositional Data Analysis, Geomathematics, Geostatistics, Geographical Information Science, Mathematical Morphology, Mathematical Petrology, Multifractals, Multiple Point Statistics, Spatial Data Science, Spatial Statistics, and Stochastic Process Modeling. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and author indices are comprehensive and extensive.

Mathematical Geosciences

Mathematical Geosciences PDF

Author: Joseph L. Awange

Publisher: Springer

Published: 2018-01-29

Total Pages: 596

ISBN-13: 3319673718

DOWNLOAD EBOOK →

This book showcases powerful new hybrid methods that combine numerical and symbolic algorithms. Hybrid algorithm research is currently one of the most promising directions in the context of geosciences mathematics and computer mathematics in general. One important topic addressed here with a broad range of applications is the solution of multivariate polynomial systems by means of resultants and Groebner bases. But that’s barely the beginning, as the authors proceed to discuss genetic algorithms, integer programming, symbolic regression, parallel computing, and many other topics. The book is strictly goal-oriented, focusing on the solution of fundamental problems in the geosciences, such as positioning and point cloud problems. As such, at no point does it discuss purely theoretical mathematics. "The book delivers hybrid symbolic-numeric solutions, which are a large and growing area at the boundary of mathematics and computer science." Dr. Daniel Li chtbau

Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion

Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion PDF

Author: N. Bleistein

Publisher: Springer Science & Business Media

Published: 2013-11-22

Total Pages: 537

ISBN-13: 1461300010

DOWNLOAD EBOOK →

For more than 80 years, the oil and gas industry has used seismic methods to construct images and determine physical characteristics of rocks that can yield information about oil and gas bearing structures in the earth. This book presents the different seismic data processing methods, also known as seismic "migration," in a unified mathematical way. The book serves as a bridge between the applied math and geophysics communities by presenting geophysicists with a practical introduction to advanced engineering mathematics, while presenting mathematicians with a window into the world of the mathematically sophisticated geophysicist.

Inverse Theory and Applications in Geophysics

Inverse Theory and Applications in Geophysics PDF

Author: Michael S. Zhdanov

Publisher: Elsevier

Published: 2015-07-15

Total Pages: 730

ISBN-13: 044462712X

DOWNLOAD EBOOK →

Geophysical Inverse Theory and Applications, Second Edition, brings together fundamental results developed by the Russian mathematical school in regularization theory and combines them with the related research in geophysical inversion carried out in the West. It presents a detailed exposition of the methods of regularized solution of inverse problems based on the ideas of Tikhonov regularization, and shows the different forms of their applications in both linear and nonlinear methods of geophysical inversion. It’s the first book of its kind to treat many kinds of inversion and imaging techniques in a unified mathematical manner. The book is divided in five parts covering the foundations of the inversion theory and its applications to the solution of different geophysical inverse problems, including potential field, electromagnetic, and seismic methods. Unique in its focus on providing a link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, it represents an exhaustive treatise on inversion theory. Written by one of the world’s foremost experts, this work is widely recognized as the ultimate researcher’s reference on geophysical inverse theory and its practical scientific applications. Presents state-of-the-art geophysical inverse theory developed in modern mathematical terminology—the first to treat many kinds of inversion and imaging techniques in a unified mathematical way. Provides a critical link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, and represents an exhaustive treatise on geophysical inversion theory. Features more than 300 illustrations, figures, charts and graphs to underscore key concepts. Reflects the latest developments in inversion theory and applications and captures the most significant changes in the field over the past decade.