Materials and Processes for Next Generation Lithography

Materials and Processes for Next Generation Lithography PDF

Author:

Publisher: Elsevier

Published: 2016-11-08

Total Pages: 636

ISBN-13: 0081003587

DOWNLOAD EBOOK →

As the requirements of the semiconductor industry have become more demanding in terms of resolution and speed it has been necessary to push photoresist materials far beyond the capabilities previously envisioned. Currently there is significant worldwide research effort in to so called Next Generation Lithography techniques such as EUV lithography and multibeam electron beam lithography. These developments in both the industrial and the academic lithography arenas have led to the proliferation of numerous novel approaches to resist chemistry and ingenious extensions of traditional photopolymers. Currently most texts in this area focus on either lithography with perhaps one or two chapters on resists, or on traditional resist materials with relatively little consideration of new approaches. This book therefore aims to bring together the worlds foremost resist development scientists from the various community to produce in one place a definitive description of the many approaches to lithography fabrication. Assembles up-to-date information from the world’s premier resist chemists and technique development lithographers on the properties and capabilities of the wide range of resist materials currently under investigation Includes information on processing and metrology techniques Brings together multiple approaches to litho pattern recording from academia and industry in one place

Microlithography

Microlithography PDF

Author: Bruce W. Smith

Publisher: CRC Press

Published: 2020-05-01

Total Pages: 770

ISBN-13: 1351643444

DOWNLOAD EBOOK →

The completely revised Third Edition to the bestselling Microlithography: Science and Technology provides a balanced treatment of theoretical and operational considerations, from fundamental principles to advanced topics of nanoscale lithography. The book is divided into chapters covering all important aspects related to the imaging, materials, and processes that have been necessary to drive semiconductor lithography toward nanometer-scale generations. Renowned experts from the world’s leading academic and industrial organizations have provided in-depth coverage of the technologies involved in optical, deep-ultraviolet (DUV), immersion, multiple patterning, extreme ultraviolet (EUV), maskless, nanoimprint, and directed self-assembly lithography, together with comprehensive descriptions of the advanced materials and processes involved. New in the Third Edition In addition to the full revision of existing chapters, this new Third Edition features coverage of the technologies that have emerged over the past several years, including multiple patterning lithography, design for manufacturing, design process technology co-optimization, maskless lithography, and directed self-assembly. New advances in lithography modeling are covered as well as fully updated information detailing the new technologies, systems, materials, and processes for optical UV, DUV, immersion, and EUV lithography. The Third Edition of Microlithography: Science and Technology authoritatively covers the science and engineering involved in the latest generations of microlithography and looks ahead to the future systems and technologies that will bring the next generations to fruition. Loaded with illustrations, equations, tables, and time-saving references to the most current technology, this book is the most comprehensive and reliable source for anyone, from student to seasoned professional, looking to better understand the complex world of microlithography science and technology.

Solvent-based Development of Photoresists for Next-generation Lithography

Solvent-based Development of Photoresists for Next-generation Lithography PDF

Author: Christine Y. Ouyang

Publisher:

Published: 2013

Total Pages: 334

ISBN-13:

DOWNLOAD EBOOK →

As feature sizes continue to shrink, the need for new materials and new processes for next-generation lithography becomes more urgent. Although aqueous base development has been the industry standard for over twenty years, there are still several issues that need to be overcome. First, the high surface tension of aqueous base developers can lead to pattern collapse of high aspect ratio patterns and limit resolution. The toxicity of aqueous base developers has also raised concerns about the environment. In order to reduce the problems related to aqueous development, solvents or materials with desirable properties must be used. Recently, there has also been growing interest in solvent-based negative-tone development (NTD) due to its better performance in printing certain feature types. Therefore, solvent-based development of photoresists was investigated in this study. One approach to reduce the pattern collapse problem and environmental issues of the lithographic process is through the use of environmentally friendly solvents with low surface tension. Supercritical carbon dioxide (scCO2) and linear methyl siloxanes (LMS) are green solvents that have low toxicity, low surface tension, low viscosity and can be recycled. Solvent-based development of both polymeric and molecular glass resists with positive- and negative-tone images have been successfully demonstrated in both solvents. High-resolution and high aspect ratio patterns were obtained with no pattern collapse observed using both solvents. As there is little iii understanding about the solvent power of linear methyl siloxanes, the dissolution behavior of polymers and molecular glasses in linear methyl siloxanes was also studied. Besides using low surface tension developers to mitigate pattern collapse problem, another approach is by using materials with high etch resistance that eliminates the use of thick films. Also, because of the low intensity of current EUV light source, the next-generation resists need to demonstrate high sensitivity and optimum absorbance. Inorganic metal oxide nanoparticles based on zirconium oxide (ZrO2) and hafnium oxide (HfO2) with organic ligands have been synthesized for EUV lithography. These nanoparticle resists can be developed as negative-tone patterns using an organic solvent and high-resolution patterns were achieved. The patterning performance of these nanoparticles in different organic solvents was also evaluated. iv.

Micro and Nano Machining of Engineering Materials

Micro and Nano Machining of Engineering Materials PDF

Author: Kaushik Kumar

Publisher: Springer

Published: 2018-09-26

Total Pages: 150

ISBN-13: 3319999001

DOWNLOAD EBOOK →

This book covers the recent developments in the production of micro and nano size products, which cater to the needs of the industry. The processes to produce the miniature sized products with unique characteristics are addressed. Moreover, their application in areas such as micro-engines, micro-heat exchangers, micro-pumps, micro-channels, printing heads and medical implants are also highlighted. The book presents such microsystem-based products as important contributors to a sustainable economy. The recent research in this book focuses on the development of new micro and nano manufacturing platforms while integrating the different technologies to manufacture the micro and nano components in a high throughput and cost effective manner. The chapters contain original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers.

Small Molecule Photoresist Materials for Next Generation Lithography

Small Molecule Photoresist Materials for Next Generation Lithography PDF

Author: Marie Elyse Krysak

Publisher:

Published: 2013

Total Pages: 414

ISBN-13:

DOWNLOAD EBOOK →

Photolithography remains the most efficient method to create semiconductor devices. Moore's law states that the number of transistors per integrated circuit will double every four years. In order to successfully continue this trend of miniaturizing feature sizes, new, smaller sized patterning materials must be studied. Small molecule photoresists are being developed for high resolution patterning. Low molecular weight amorphous materials, or molecular glasses (MGs), have emerged as alternatives to polymeric resist materials. They combine the benefits of small molecular size with the favorable aspects of polymers, such as a high glass transition temperature (Tg) and the ability to form thin films. Inorganic-based nanoparticles are currently being explored as next generation photoresists. These materials are similar in architecture to MGs, but are comprised of an inorganic core that provides excellent thermal stability and resistance to plasma etching. This research focuses on the synthesis and characterization both MG and nanoparticle resist materials for high resolution patterning. The materials studied are designed for use with Extreme Ultraviolet Lithography (EUV-L), using a wavelength of 13.5 nm. This next-generation technique is believed to be the key to extending patterning capabilities to sub 30 nm and beyond. Small molecule resists materials have been specifically designed for use with alternative lithographic processing techniques. Small, rigid structures were designed for vapor deposition, which has been examined as an alternative to spin-coating. This process has been shown to deposit a uniform film, free from defects and impurities, without the use of solvent. Sub-millisecond laser heating is a relatively new technique that is studied as an alternative the post exposure bake. This method has shown the ability to reduce line edge roughness while simultaneously improving resist sensitivity. Systematically designed MG photoacid generators have been used to characterize the acid diffusion behavior during laser heating as compared to traditional hotplate heating. The development of resist materials for these new processes is a critical step in the preparation of these processes for widespread use in lithographic processing. ii.

Nanoimprint Lithography

Nanoimprint Lithography PDF

Author: Hongbo Lan

Publisher: Nova Science Publishers

Published: 2011

Total Pages: 0

ISBN-13: 9781611225013

DOWNLOAD EBOOK →

Lithography, the fundamental fabrication process of semiconductor devices, has been playing a critical role in micro-nanofabrication technologies and manufacturing of Integrated Circuits (IC). Traditional optical lithography including contact and project photolithography has contributed significantly to the semiconductor device advancements. Currently, maintaining the rapid pace of half-pitch reduction requires overcoming the challenge of improving and extending the incumbent optical projection lithography technology while simultaneously developing alternative, next generation lithography (NGL) technologies to be used when optical projection lithography is no longer more economical than the alternatives. Furthermore, NIL is also one of the most promising low-cost, high-throughput technologies for manufacturing nanostructures as this highly technical book will give new insight to.

Electronics

Electronics PDF

Author: Michael Olorunfunmi Kolawole

Publisher: CRC Press

Published: 2020-06-15

Total Pages: 440

ISBN-13: 1000089061

DOWNLOAD EBOOK →

This book gives clear explanations of the technical aspects of electronics engineering from basic classical device formulations to the use of nanotechnology to develop efficient quantum electronic systems. As well as being up to date, this book provides a broader range of topics than found in many other electronics books. This book is written in a clear, accessible style and covers topics in a comprehensive manner. This book’s approach is strongly application-based with key mathematical techniques introduced, helpful examples used to illustrate the design procedures, and case studies provided where appropriate. By including the fundamentals as well as more advanced techniques, the author has produced an up-to-date reference that meets the requirements of electronics and communications students and professional engineers. Features Discusses formulation and classification of integrated circuits Develops a hierarchical structure of functional logic blocks to build more complex digital logic circuits Outlines the structure of transistors (bipolar, JFET, MOSFET or MOS, CMOS), their processing techniques, their arrangement forming logic gates and digital circuits, optimal pass transistor stages of buffered chain, sources and types of noise, and performance of designed circuits under noisy conditions Explains data conversion processes, choice of the converter types, and inherent errors Describes electronic properties of nanomaterials, the crystallites’ size reduction effect, and the principles of nanoscale structure fabrication Outlines the principles of quantum electronics leading to the development of lasers, masers, reversible quantum gates, and circuits and applications of quantum cells and fabrication methods, including self-assembly (quantum-dot cellular automata) and tunneling (superconducting circuits), and describes quantum error-correction techniques Problems are provided at the end of each chapter to challenge the reader’s understanding

Drug Delivery Devices and Therapeutic Systems

Drug Delivery Devices and Therapeutic Systems PDF

Author: Eric Chappel

Publisher: Academic Press

Published: 2020-11-07

Total Pages: 680

ISBN-13: 0128198397

DOWNLOAD EBOOK →

Drug Delivery Devices and Therapeutic Systems examines the current technology and innovations moving drug delivery systems (DDS) forward. The book provides an overview on the therapeutic use of drug delivery devices, including design, applications, and a description of the design of each device. While other books focus on the therapy, the primary emphasis in this book is on current technologies for DDS applications, including microfluidics, nanotechnology, biodegradable hydrogel and microneedles, with a special emphasis on wearable DDS. As part of the Developments in Biomedical Engineering and Bioelectronics series, this book is written by experts in the field and informed with information directly from manufacturers. Pharmaceutical scientists, medical researchers, biomedical engineers and clinical professionals will find this an essential reference. Provides essential information on the most recent drug delivery systems available Explains current technology and its applications to drug delivery Contains contributions from biomedical engineers, pharmaceutical scientists and manufacturers

Nanoimprint Lithography: An Enabling Process for Nanofabrication

Nanoimprint Lithography: An Enabling Process for Nanofabrication PDF

Author: Weimin Zhou

Publisher: Springer Science & Business Media

Published: 2013-01-04

Total Pages: 270

ISBN-13: 3642344283

DOWNLOAD EBOOK →

Nanoimprint Lithography: An enabling process for nanofabrication presents a comprehensive description of nanotechnology that is one of the most promising low-cost, high-throughput technologies for manufacturing nanostructures, and an emerging lithography candidates for 22, 16 and 11 nm nodes. It provides the exciting, multidisciplinary field, offering a wide range of topics covering: principles, process, material and application. This book would be of specific interest for researchers and graduate students in the field of nanoscience, nanotechnology and nanofabrication, material, physical, chemical, electric engineering and biology. Dr. Weimin Zhou is an associate professor at Shanghai Nanotechnology Promotion Center, China.

Patternable Materials for Next-generation Lithography

Patternable Materials for Next-generation Lithography PDF

Author: Austin Patrick Lane

Publisher:

Published: 2017

Total Pages: 462

ISBN-13:

DOWNLOAD EBOOK →

One of the salient truths facing the microelectronics industry today is that photolithography tools are unable to meet the resolution requirements for manufacturing next-generation devices. In the past, circuit feature sizes have been minimized by reducing the exposure wavelength used for patterning. However, this strategy failed with the worldwide dereliction of 157 nm lithography in 2003. Extreme ultraviolet (EUV) lithography still faces many technical challenges and is not ready for high volume manufacturing. How will the microelectronics industry continue to innovate without regular advances in photopatterning technology? Regardless of which paradigm is adopted, new materials will probably be required to meet the specific challenges of scaling down feature sizes and satisfying the economic ultimatum of Moore’s Law. In the search for higher resolution patterning tools, device manufacturers have identified block copolymer (BCP) lithography as a possible technique for next-generation nanofabrication. BCP self-assembly offers access to sub-5 nm features in thin films, well beyond the resolution limits of photolithography. However, BCP materials must be carefully designed, synthesized, and processed to create lithographically interesting features with good etch resistance for pattern transfer. In this dissertation, we describe a pattern transfer process for 5 nm BCP lamellae and a directed self-assembly (DSA) process for aligning 5 nm structures in thin films. To achieve defect-free alignment, the interfacial interactions between the BCP and pre-patterned substrate must be precisely controlled. We also discuss a new process for selectively modifying oxidized chromium films using polymer brushes, which could further improve the aforesaid DSA process. To facilitate better pattern transfer of BCP structures, several new BCPs with “self-developing” blocks were synthesized and tested. These materials depolymerize and evaporate in strongly acidic environments, leading to developed BCP features without the need for etching or solvent. “Self-developing” polymers may also be useful materials for traditional photolithography. Chemically amplified resists used in manufacturing today are fundamentally limited by a trade-off between sensitivity and pattern quality. To overcome this problem, we present a new type of photoresist that relies on depolymerization, rather than catalysis, to achieve amplification without producing significant roughness or bias in the final pattern