Materials, Matter & Particles

Materials, Matter & Particles PDF

Author: Michael M. Woolfson

Publisher: World Scientific

Published: 2010

Total Pages: 327

ISBN-13: 1848164602

DOWNLOAD EBOOK →

This book traces the history of ideas about the nature of matter and also the way that mankind has used material resources that the world offers. Starting with the ideas of ancient civilizations that air, earth, fire and water were the basic ingredients of all matter, it traces the development of the science of chemistry beginning within the ranks of the alchemists. First, the idea of elements grew and then the atomic nature of matter was verified. Physicists had entered the scene, showing the nature of atoms in terms of fundamental particles and then introducing the concept of wave-particle duality that altered the basic concepts of what matter was. Finally the physicists discovered a panoply of fundamental particles, some observed within atom-smashing machines and the existence of others merely postulated.In parallel with the above there is a description of various kinds of matter as it affects everyday life ? including the nature of matter associated with life itself. The way that early man used the materials directly given by nature, such as stone, wood and animal skins, is followed by the use of materials requiring some process to be employed ? e.g. metals which include bronze and also concrete. Some important modern materials are discussed, such as synthetic fibres and plastics and semiconductors, and potentially important future products from new developments in nanotechnology.

Stuff Matters

Stuff Matters PDF

Author: Mark Miodownik

Publisher: Houghton Mifflin Harcourt

Published: 2014

Total Pages: 277

ISBN-13: 0544236041

DOWNLOAD EBOOK →

An eye-opening adventure deep inside the everyday materials that surround us, from concrete and steel to denim and chocolate, packed with surprising stories and fascinating science.

Advances in Condensed Matter and Materials Research

Advances in Condensed Matter and Materials Research PDF

Author: Francois Gerard

Publisher: Nova Publishers

Published: 2001

Total Pages: 252

ISBN-13: 9781590338018

DOWNLOAD EBOOK →

Nine articles written especially for the series synthesize international research in condensed matter. Among the topics are fiber debonding and bridging toughening in fiber-reinforced brittle matrix composites, analyzing the electron transport phenomena in high- temperature superconductivity materials by studying the band spectrum and its transformation under doping by different impurities, a functional integral approach in superconductivity theory, dye molecules in zeolite L nano crystals for efficient light harvesting, luminescent properties of some substituted 1,8 naphthyridines, and the discrete dependence of powder steels properties on porosity. No information is provided about future volumes. c. Book News Inc.

The Metal-Hydrogen System

The Metal-Hydrogen System PDF

Author: Yuh Fukai

Publisher: Springer Science & Business Media

Published: 2006-02-02

Total Pages: 500

ISBN-13: 354028883X

DOWNLOAD EBOOK →

Metal hydrides are of inestimable importance for the future of hydrogen energy. This unique monograph presents a clear and comprehensive description of the bulk properties of the metal-hydrogen system. The statistical thermodynamics is treated over a very wide range of pressure, temperature and composition. Another prominent feature of the book is its elucidation of the quantum mechanical behavior of interstitial hydrogen atoms, including their states and motion. The important topic of hydrogen interaction with lattice defects and its materials-science implications are also discussed thoroughly. This second edition has been substantially revised and updated.

Springer Handbook of Materials Data

Springer Handbook of Materials Data PDF

Author: Hans Warlimont

Publisher: Springer

Published: 2018-07-27

Total Pages: 1140

ISBN-13: 3319697439

DOWNLOAD EBOOK →

The second edition of this well-received handbook is the most concise yet comprehensive compilation of materials data. The chapters provide succinct descriptions and summarize essential and reliable data for various types of materials. The information is amply illustrated with 900 tables and 1050 figures selected primarily from well-established data collections, such as Landolt-Börnstein, which is now part of the SpringerMaterials database. The new edition of the Springer Handbook of Materials Data starts by presenting the latest CODATA recommended values of the fundamental physical constants and provides comprehensive tables of the physical and physicochemical properties of the elements. 25 chapters collect and summarize the most frequently used data and relationships for numerous metals, nonmetallic materials, functional materials and selected special structures such as liquid crystals and nanostructured materials. Along with careful updates to the content and the inclusion of timely and extensive references, this second edition includes new chapters on polymers, materials for solid catalysts and low-dimensional semiconductors. This handbook is an authoritative reference resource for engineers, scientists and students engaged in the vast field of materials science.

Fundamentals of Radiation Materials Science

Fundamentals of Radiation Materials Science PDF

Author: GARY S. WAS

Publisher: Springer

Published: 2016-07-08

Total Pages: 1002

ISBN-13: 1493934384

DOWNLOAD EBOOK →

The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.

Bulk Metallic Glasses

Bulk Metallic Glasses PDF

Author: C. Suryanarayana

Publisher: CRC Press

Published: 2017-11-22

Total Pages: 543

ISBN-13: 1498763685

DOWNLOAD EBOOK →

Reflecting the fast pace of research in the field, the Second Edition of Bulk Metallic Glasses has been thoroughly updated and remains essential reading on the subject. It incorporates major advances in glass forming ability, corrosion behavior, and mechanical properties. Several of the newly proposed criteria to predict the glass-forming ability of alloys have been discussed. All other areas covered in this book have been updated, with special emphasis on topics where significant advances have occurred. These include processing of hierarchical surface structures and synthesis of nanophase composites using the chemical behavior of bulk metallic glasses and the development of novel bulk metallic glasses with high-strength and high-ductility and superelastic behavior. New topics such as high-entropy bulk metallic glasses, nanoporous alloys, novel nanocrystalline alloys, and soft magnetic glassy alloys with high saturation magnetization have also been discussed. Novel applications, such as metallic glassy screw bolts, surface coatings, hyperthermia glasses, ultra-thin mirrors and pressure sensors, mobile phone casing, and degradable biomedical materials, are described. Authored by the world’s foremost experts on bulk metallic glasses, this new edition endures as an indispensable reference and continues to be a one-stop resource on all aspects of bulk metallic glasses.

Metal Fabrication Technology for Agriculture

Metal Fabrication Technology for Agriculture PDF

Author: Larry Jeffus

Publisher: Cengage Learning

Published: 2010-01-19

Total Pages: 580

ISBN-13: 9781435498570

DOWNLOAD EBOOK →

METAL FABRICATION TECHNOLOGY FOR AGRICULTURE, 2E provides your students with an easy-to-understand, safety-conscious introduction to agricultural welding processes and techniques. Each section of this full-color book begins by introducing your students to equipment and materials used in agricultural welding and includes complete setup instructions. The subsequent chapters in each section allow your students to learn individual welding techniques in various applications and positions. METAL FABRICATION TECHNOLOGY FOR AGRICULTURE, 2E provides extensive coverage of brazing and specialized nonmetallic fabrication, designed to lead your students step-by-step in developing the skills necessary for welding all types of agricultural machinery. Each chapter includes close up shots of actual welds and learning aids that have been proven to be effective, making this how-to and reference manual a key resource for students participating in agriculture education programs throughout the country. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Introduction to Materials Chemistry

Introduction to Materials Chemistry PDF

Author: Harry R. Allcock

Publisher: John Wiley & Sons

Published: 2019-10-02

Total Pages: 692

ISBN-13: 1119347254

DOWNLOAD EBOOK →

This textbook introduces the reader to the elementary chemistry on which materials science depends by discussing the different classes of materials and their applications. It shows the reader how different types of materials are produced, why they possess specific properties, and how they are used in technology. Each chapter contains study questions to enable discussions and consolidation of the acquired knowledge. The new edition of this textbook is completely revised and updated to reflect the significant expansion of the field of materials chemistry over the last years, covering now also topics such as graphene, nanotubes, light emitting diodes, extreme photolithography, biomedical materials, and metal organic frameworks. From the reviews of the first edition: "This book is not only informative and comprehensive for a novice reader, but also a valuable resource for a scientist and/or an industrialist for new and novel challenges." (Materials and Manufacturing Process, June 2009) "Allcock provides a clear path by first describing basic chemical principles, then distinguishing between the various major materials groups, and finally enriching the student by offering a variety of special examples." (CHOICE, April 2009) "Proceeding logically from the basics to materials in advanced technology, it covers the fundamentals of materials chemistry, including principles of materials synthesis and materials characterization methods." (Internationale Fachzeitschrift Metall, January 2009)

Engineering Physics of High-Temperature Materials

Engineering Physics of High-Temperature Materials PDF

Author: Nirmal K. Sinha

Publisher: John Wiley & Sons

Published: 2022-02-15

Total Pages: 436

ISBN-13: 1119420466

DOWNLOAD EBOOK →

ENGINEERING PHYSICS OF HIGH-TEMPERATURE MATERIALS Discover a comprehensive exploration of high temperature materials written by leading materials scientists In Engineering Physics of High-Temperature Materials: Metals, Ice, Rocks, and Ceramics distinguished researchers and authors Nirmal K. Sinha and Shoma Sinha deliver a rigorous and wide-ranging discussion of the behavior of different materials at high temperatures. The book discusses a variety of physical phenomena, from plate tectonics and polar sea ice to ice-age and intraglacial depression and the postglacial rebound of Earth’s crust, stress relaxation at high temperatures, and microstructure and crack-enhanced Elasto Delayed Elastic Viscous (EDEV) models. At a very high level, Engineering Physics of High-Temperature Materials (EPHTM) takes a multidisciplinary view of the behavior of materials at temperatures close to their melting point. The volume particularly focuses on a powerful model called the Elasto-Delayed-Elastic-Viscous (EDEV) model that can be used to study a variety of inorganic materials ranging from snow and ice, metals, including complex gas-turbine engine materials, as well as natural rocks and earth formations (tectonic processes). It demonstrates how knowledge gained in one field of study can have a strong impact on other fields. Engineering Physics of High-Temperature Materials will be of interest to a broad range of specialists, including earth scientists, volcanologists, cryospheric and interdisciplinary climate scientists, and solid-earth geophysicists. The book demonstrates that apparently dissimilar polycrystalline materials, including metals, alloys, ice, rocks, ceramics, and glassy materials, all behave in a surprisingly similar way at high temperatures. This similarity makes the information contained in the book valuable to all manner of physical scientists. Readers will also benefit from the inclusion of: A thorough introduction to the importance of a unified model of high temperature material behavior, including high temperature deformation and the strength of materials An exploration of the nature of crystalline substances for engineering applications, including basic materials classification, solid state materials, and general physical principles Discussions of forensic physical materialogy and test techniques and test systems Examinations of creep fundamentals, including rheology and rheological terminology, and phenomenological creep failure models Perfect for materials scientists, metallurgists, and glaciologists, Engineering Physics of High-Temperature Materials: Metals, Ice, Rocks, and Ceramics will also earn a place in the libraries of specialists in the nuclear, chemical, and aerospace industries with an interest in the physics and engineering of high-temperature materials.