Mass Action in the Nervous System

Mass Action in the Nervous System PDF

Author: Bozzano G Luisa

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 510

ISBN-13: 0323140203

DOWNLOAD EBOOK →

Mass Action in the Nervous System: Examination of the Neurophysiological Basis of Adaptive Behavior through the EEG focuses on the neural mechanisms and the behavioral significance of the electroencephalogram, with emphasis on observations made on the mammalian olfactory system. Organized into seven chapters, this book begins with a brief nonmathematical review of the concept of the neuron and the interrelations among neurons that lead to the formation of interactive masses. Some chapters follow on the linear properties of neurons and their parts; the ionic hypothesis; the nonlinear input-output relations of neurons in masses expressed in terms of amplitude-dependent coefficients in linear differential equations; and the relations between the states of activity of neurons. Subsequent chapters describe the properties resulting from feedback within neural masses; the effects of the nonlinearities in the input-output relations of neurons on the behavior of masses; and some inferences concerning the mechanisms of neural signal processing at the level of neural masses. The book is a model for an advanced text in neurophysiology, and some understanding is assumed of the elements of the fields of linear analysis, probability, statistics, theory of potential, neuroanatomy, electrophysiology, neuropharmacology, and experimental psychology.

Discovering the Brain

Discovering the Brain PDF

Author: National Academy of Sciences

Publisher: National Academies Press

Published: 1992-01-01

Total Pages: 195

ISBN-13: 0309045290

DOWNLOAD EBOOK →

The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."

How Brains Make Up Their Minds

How Brains Make Up Their Minds PDF

Author: Walter J. Freeman

Publisher: Columbia University Press

Published: 2000

Total Pages: 190

ISBN-13: 9780231120081

DOWNLOAD EBOOK →

I think, therefore I am. The legendary pronouncement of philosopher René Descartes lingers as accepted wisdom in the Western world nearly four centuries after its author's death. But does thought really come first? Who actually runs the show: we, our thoughts, or the neurons firing within our brains? Walter J. Freeman explores how we control our behavior and make sense of the world around us. Avoiding determinism both in sociobiology, which proposes that persons' genes control their brains' functioning, and in neuroscience, which posits that their brains' disposition is molded by chemistry and environmental forces, Freeman charts a new course--one that gives individuals due credit and responsibility for their actions. Drawing upon his five decades of research in neuroscience, Freeman utilizes the latest advances in his field as well as perspectives from disciplines as diverse as mathematics, psychology, and philosophy to explicate how different human brains act in their chosen diverse ways. He clarifies the implications of brain imaging, by which neural activity can be observed during the course of normal movements, and shows how nonlinear dynamics reveals order within the fecund chaos of brain function.

Conn's Translational Neuroscience

Conn's Translational Neuroscience PDF

Author: P. Michael Conn

Publisher: Academic Press

Published: 2016-09-28

Total Pages: 776

ISBN-13: 0128025964

DOWNLOAD EBOOK →

Conn’s Translational Neuroscience provides a comprehensive overview reflecting the depth and breadth of the field of translational neuroscience, with input from a distinguished panel of basic and clinical investigators. Progress has continued in understanding the brain at the molecular, anatomic, and physiological levels in the years following the 'Decade of the Brain,' with the results providing insight into the underlying basis of many neurological disease processes. This book alternates scientific and clinical chapters that explain the basic science underlying neurological processes and then relates that science to the understanding of neurological disorders and their treatment. Chapters cover disorders of the spinal cord, neuronal migration, the autonomic nervous system, the limbic system, ocular motility, and the basal ganglia, as well as demyelinating disorders, stroke, dementia and abnormalities of cognition, congenital chromosomal and genetic abnormalities, Parkinson's disease, nerve trauma, peripheral neuropathy, aphasias, sleep disorders, and myasthenia gravis. In addition to concise summaries of the most recent biochemical, physiological, anatomical, and behavioral advances, the chapters summarize current findings on neuronal gene expression and protein synthesis at the molecular level. Authoritative and comprehensive, Conn’s Translational Neuroscience provides a fully up-to-date and readily accessible guide to brain functions at the cellular and molecular level, as well as a clear demonstration of their emerging diagnostic and therapeutic importance. Provides a fully up-to-date and readily accessible guide to brain functions at the cellular and molecular level, while also clearly demonstrating their emerging diagnostic and therapeutic importance Features contributions from leading global basic and clinical investigators in the field Provides a great resource for researchers and practitioners interested in the basic science underlying neurological processes Relates and translates the current science to the understanding of neurological disorders and their treatment

EEG/MEG Source Reconstruction

EEG/MEG Source Reconstruction PDF

Author: Thomas R. Knösche

Publisher: Springer Nature

Published: 2022-10-01

Total Pages: 429

ISBN-13: 3030749185

DOWNLOAD EBOOK →

This textbook provides a comprehensive and didactic introduction from the basics to the current state of the art in the field of EEG/MEG source reconstruction. Reconstructing the generators or sources of electroencephalographic and magnetoencephalographic (EEG/MEG) signals is an important problem in basic neuroscience as well as clinical research and practice. Over the past few decades, an entire theory, together with a whole collection of algorithms and techniques, has developed. In this textbook, the authors provide a unified perspective on a broad range of EEG/MEG source reconstruction methods, with particular emphasis on their respective assumptions about sources, data, head tissues, and sensor properties. An introductory chapter highlights the concept of brain imaging and the particular importance of the neuroelectromagnetic inverse problem. This is followed by an in-depth discussion of neural information processing and brain signal generation and an introduction to the practice of data acquisition. Next, the relevant mathematical models for the sources of EEG and MEG are discussed in detail, followed by the neuroelectromagnetic forward problem, that is, the prediction of EEG or MEG signals from those source models, using biophysical descriptions of the head tissues and the sensors. The main part of this textbook is dedicated to the source reconstruction methods. The authors present a theoretical framework of the neuroelectromagnetic inverse problem, centered on Bayes’ theorem, which then serves as the basis for a detailed description of a large variety of techniques, including dipole fit methods, distributed source reconstruction, spatial filters, and dynamic source reconstruction methods. The final two chapters address the important topic of assessment, including verification and validation of source reconstruction methods, and their actual application to real-world scientific and clinical questions. This book is intended as basic reading for anybody who is engaged with EEG/MEG source reconstruction, be it as a method developer or as a user, including advanced undergraduate students, PhD students, and postdocs in neuroscience, biomedical engineering, and related fields.

Self-Organization in the Nervous System

Self-Organization in the Nervous System PDF

Author: Yan M. Yufik

Publisher: Frontiers Media SA

Published: 2017-11-30

Total Pages: 137

ISBN-13: 2889453405

DOWNLOAD EBOOK →

This special issue reviews state-of-the-art approaches to the biophysical roots of cognition. These approaches appeal to the notion that cognitive capacities serve to optimize responses to changing external conditions. Crucially, this optimisation rests on the ability to predict changes in the environment, thus allowing organisms to respond pre-emptively to changes before their onset. The biophysical mechanisms that underwrite these cognitive capacities remain largely unknown; although a number of hypotheses has been advanced in systems neuroscience, biophysics and other disciplines. These hypotheses converge on the intersection of thermodynamic and information-theoretic formulations of self-organization in the brain. The latter perspective emerged when Shannon’s theory of message transmission in communication systems was used to characterise message passing between neurons. In its subsequent incarnations, the information theory approach has been integrated into computational neuroscience and the Bayesian brain framework. The thermodynamic formulation rests on a view of the brain as an aggregation of stochastic microprocessors (neurons), with subsequent appeal to the constructs of statistical mechanics and thermodynamics. In particular, the use of ensemble dynamics to elucidate the relationship between micro-scale parameters and those of the macro-scale aggregation (the brain). In general, the thermodynamic approach treats the brain as a dissipative system and seeks to represent the development and functioning of cognitive mechanisms as collective capacities that emerge in the course of self-organization. Its explicanda include energy efficiency; enabling progressively more complex cognitive operations such as long-term prediction and anticipatory planning. A cardinal example of the Bayesian brain approach is the free energy principle that explains self-organizing dynamics in the brain in terms of its predictive capabilities – and selective sampling of sensory inputs that optimise variational free energy as a proxy for Bayesian model evidence. An example of thermodynamically grounded proposals, in this issue, associates self-organization with phase transitions in neuronal state-spaces; resulting in the formation of bounded neuronal assemblies (neuronal packets). This special issue seeks a discourse between thermodynamic and informational formulations of the self-organising and self-evidencing brain. For example, could minimization of thermodynamic free energy during the formation of neuronal packets underlie minimization of variational free energy?

Methods, Models, Simulations and Approaches Towards a General Theory of Change - Proceedings of the Fifth National Conference on Systems Science

Methods, Models, Simulations and Approaches Towards a General Theory of Change - Proceedings of the Fifth National Conference on Systems Science PDF

Author: Gianfranco Minati

Publisher: World Scientific

Published: 2012

Total Pages: 725

ISBN-13: 9814383325

DOWNLOAD EBOOK →

The book contains the Proceedings of the 2010 Conference of the Italian Systems Society. Papers deal with the interdisciplinary study of processes of changing related to a wide variety of specific disciplinary aspects. Classical attempts to deal with them, based on generalising approaches used to study the movement of bodies and environmental influence, have included ineffective reductionistic simplifications. Indeed changing also relates, for instance, to processes of acquisition and varying properties such as for software; growing and aging biological systems; learning/cognitive systems; and socio-economic systems growing and developing through innovations. Some approaches to modelling such processes are based on considering changes in structure, e.g., phase-transitions. Other approaches are based on considering (1) periodic changes in structure as for processes of self-organisation; (2) non-periodic but coherent changes in structure, as for processes of emergence; (3) the quantum level of description. Papers in the book study the problem considering its transdisciplinary nature, i.e., systemic properties studied per se and not within specific disciplinary contexts. The aim of these studies is to outline a transdisciplinary theory of change in systemic properties. Such a theory should have simultaneous, corresponding and eventually hierarchical disciplinary aspects as expected for a general theory of emergence. Within this transdisciplinary context, specific disciplinary research activities and results are assumed to be mutually represented as within a philosophical and conceptual framework based on the theoretical centrality of the observer and conceptual non-separability of context and observer, related to logically open systems and Quantum Entanglement. Contributions deal with such issues in interdisciplinary ways considering theoretical aspects and applications from Physics, Cognitive Science, Biology, Artificial Intelligence, Economics, Architecture, Philosophy, Music and Social Systems.

Caffeine in Food and Dietary Supplements

Caffeine in Food and Dietary Supplements PDF

Author: Leslie A. Pray

Publisher:

Published: 2014

Total Pages: 0

ISBN-13: 9780309297493

DOWNLOAD EBOOK →

Caffeine in Food and Dietary Supplements is the summary of a workshop convened by the Institute of Medicine in August 2013 to review the available science on safe levels of caffeine consumption in foods, beverages, and dietary supplements and to identify data gaps. Scientists with expertise in food safety, nutrition, pharmacology, psychology, toxicology, and related disciplines; medical professionals with pediatric and adult patient experience in cardiology, neurology, and psychiatry; public health professionals; food industry representatives; regulatory experts; and consumer advocates discussed the safety of caffeine in food and dietary supplements, including, but not limited to, caffeinated beverage products, and identified data gaps. Caffeine, a central nervous stimulant, is arguably the most frequently ingested pharmacologically active substance in the world. Occurring naturally in more than 60 plants, including coffee beans, tea leaves, cola nuts and cocoa pods, caffeine has been part of innumerable cultures for centuries. But the caffeine-in-food landscape is changing. There are an array of new caffeine-containing energy products, from waffles to sunflower seeds, jelly beans to syrup, even bottled water, entering the marketplace. Years of scientific research have shown that moderate consumption by healthy adults of products containing naturally-occurring caffeine is not associated with adverse health effects. The changing caffeine landscape raises concerns about safety and whether any of these new products might be targeting populations not normally associated with caffeine consumption, namely children and adolescents, and whether caffeine poses a greater health risk to those populations than it does for healthy adults. This report delineates vulnerable populations who may be at risk from caffeine exposure; describes caffeine exposure and risk of cardiovascular and other health effects on vulnerable populations, including additive effects with other ingredients and effects related to pre-existing conditions; explores safe caffeine exposure levels for general and vulnerable populations; and identifies data gaps on caffeine stimulant effects.

Form and Function in the Brain and Spinal Cord

Form and Function in the Brain and Spinal Cord PDF

Author: Stephen G. Waxman

Publisher: MIT Press

Published: 2003-01-24

Total Pages: 546

ISBN-13: 9780262731553

DOWNLOAD EBOOK →

This book reflects Stephen Waxman's three decades of research on the form and functions of the brain and spinal cord. Building on his experience as a neuroscientist studying model systems as primitive as eels and as a neurologist studying humans, Waxman discusses a wide variety of topics, including the design principles that optimize neural function; molecular and cellular substrates of behavior; the role of glial cells in the brain; the molecular basis for pain; plasticity in the brain and spinal cord; strategies for promoting functional recovery in disorders such as multiple sclerosis, spinal cord injury, and stroke; and prospects for rebuilding the brain and spinal cord. The pieces provide example after example of the elegance of design of the nervous system, of the intricate interplay between structure and function in health and disease, and of the rich borderland between neuroscience and neurology.