Many-Body Methods for Atoms and Molecules

Many-Body Methods for Atoms and Molecules PDF

Author: Rajat Kumar Chaudhuri

Publisher: CRC Press

Published: 2017-02-17

Total Pages: 161

ISBN-13: 1315356333

DOWNLOAD EBOOK →

Brings Readers from the Threshold to the Frontier of Modern Research Many-Body Methods for Atoms and Molecules addresses two major classes of theories of electron correlation: the many-body perturbation theory and coupled cluster methods. It discusses the issues related to the formal development and consequent numerical implementation of the methods from the standpoint of a practicing theoretician. The book will enable readers to understand the future development of state-of-the-art multi-reference coupled cluster methods as well as their perturbative counterparts. The book begins with an introduction to the issues relevant to the development of correlated methods in general. It next gives a formally rigorous treatment of aspects that pave the foundation toward the theoretical development of methods capable of tackling problems of electronic correlation. The authors go on to cover perturbation theory first in a fundamental way and then in the multi-reference context. They also describe the idea of state-specific theories, Fock space-based multi-reference coupled cluster methods, and basic issues of the single-reference coupled cluster method. The book concludes with state-of-the-art methods of modern electronic structure.

Many-Body Methods for Atoms, Molecules and Clusters

Many-Body Methods for Atoms, Molecules and Clusters PDF

Author: Jochen Schirmer

Publisher: Springer

Published: 2018-11-02

Total Pages: 332

ISBN-13: 3319936026

DOWNLOAD EBOOK →

This book provides an introduction to many-body methods for applications in quantum chemistry. These methods, originating in field-theory, offer an alternative to conventional quantum-chemical approaches to the treatment of the many-electron problem in molecules. Starting with a general introduction to the atomic and molecular many-electron problem, the book then develops a stringent formalism of field-theoretical many-body theory, culminating in the diagrammatic perturbation expansions of many-body Green's functions or propagators in terms of Feynman diagrams. It also introduces and analyzes practical computational methods, such as the field-tested algebraic-diagrammatic construction (ADC) schemes. The ADC concept can also be established via a wave-function based procedure, referred to as intermediate state representation (ISR), which bridges the gap between propagator and wave-function formulations. Based on the current rapid increase in computer power and the development of efficient computational methods, quantum chemistry has emerged as a potent theoretical tool for treating ever-larger molecules and problems of chemical and physical interest. Offering an introduction to many-body methods, this book appeals to advanced students interested in an alternative approach to the many-electron problem in molecules, and is suitable for any courses dealing with computational methods in quantum chemistry.

Brillouin-Wigner Methods for Many-Body Systems

Brillouin-Wigner Methods for Many-Body Systems PDF

Author: Stephen Wilson

Publisher: Springer Science & Business Media

Published: 2009-12-01

Total Pages: 235

ISBN-13: 9048133734

DOWNLOAD EBOOK →

Brillouin-Wigner Methods for Many-Body Systems gives an introduction to many-body methods in electronic structure theory for the graduate student and post-doctoral researcher. It provides researchers in many-body physics and theoretical chemistry with an account of Brillouin-Wigner methodology as it has been developed in recent years to handle the multireference correlation problem. Moreover, the frontiers of this research field are defined. This volume is of interest to atomic and molecular physicists, physical chemists and chemical physicists, quantum chemists and condensed matter theorists, computational chemists and applied mathematicians.

Many-Body Methods in Quantum Chemistry

Many-Body Methods in Quantum Chemistry PDF

Author: Uzi Kaldor

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 354

ISBN-13: 3642934242

DOWNLOAD EBOOK →

The present volume contains the text of the invited lectures presented at the Symposium on Many Body Methods in Quantum Chemistry, held on the campus of Tel Aviv University in August 1988. The Symposium was a satellite meeting of the Sixth International Congress on Quantum Chemistry held in Jerusalem. The development and application of many-body methods in Quantum chemistry have been on the rise for a number of years. This is therefore a good time for an interim report on the state of the field. It is hoped that such a report is hereby provided, though it may not be complete. The Symposium was held under the auspices of Tel Aviv University, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry. Other sponsors were the Israeli Academy of Sciences and Humanities, and the Israeli Ministry of Science and Development. Many thanks go to all of them. Finally, I would like to thank all the speakers and participants for making the meeting the enjoyable and (I hope) profitable experience it was. Tel Aviv, Israel Uzi Kaldor TESTS AND APPLICATIONS OF COMPLETE MODEL SPACE QUASIDEGENERATE MANY-BODY PERTURBATION THEORY FOR MOLECULES Karl F. Freed The James Franck Institute and Department of Chemistry The University of Chicago, Chicago, DUnois 60637 U.S.A.

Many-Body Methods in Chemistry and Physics

Many-Body Methods in Chemistry and Physics PDF

Author: Isaiah Shavitt

Publisher: Cambridge University Press

Published: 2009-08-06

Total Pages: 547

ISBN-13: 052181832X

DOWNLOAD EBOOK →

This book describes the mathematical and diagrammatic techniques employed in the popular many-body methods to determine molecular structure, properties and interactions.

The Many-Body Problem in Quantum Mechanics

The Many-Body Problem in Quantum Mechanics PDF

Author: Norman Henry March

Publisher: Courier Corporation

Published: 1995-01-01

Total Pages: 482

ISBN-13: 0486687546

DOWNLOAD EBOOK →

Single-volume account of methods used in dealing with the many-body problem and the resulting physics. Single-particle approximations, second quantization, many-body perturbation theory, Fermi fluids, superconductivity, many-boson systems, more. Each chapter contains well-chosen problems. Only prerequisite is basic understanding of elementary quantum mechanics. 1967 edition.

Aspects of Many-Body Effects in Molecules and Extended Systems

Aspects of Many-Body Effects in Molecules and Extended Systems PDF

Author: Debashis Mukherjee

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 551

ISBN-13: 3642613306

DOWNLOAD EBOOK →

This volume features invited lectures presented in the workshop-cum-symposium on aspects of many-body effects in molecules and extended systems, Calcutta, February 1 - 10, 1988. The organizers invited leading experts to present recent developments of many-body methods as applied to molecules and condensed systems. The panorama portrayed is quite broad, but by no means exhaustive. The emphasis is undoubtedly on a "molecular point of view".

Atoms, Molecules and Clusters in Electric Fields

Atoms, Molecules and Clusters in Electric Fields PDF

Author: George Maroulis

Publisher: Imperial College Press

Published: 2006

Total Pages: 694

ISBN-13: 1860948863

DOWNLOAD EBOOK →

With the central importance of electric polarizability and hyperpolarizability for a wide spectrum of activities, this book charts the trends in the accurate theoretical determination of these properties in specialized fields. The contributions include reviews and original papers that extend from methodology to applications in specific areas of primary importance such as cluster science and organic synthesis of molecules with specific properties.

Manipulating Quantum Systems

Manipulating Quantum Systems PDF

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-09-14

Total Pages: 315

ISBN-13: 0309499542

DOWNLOAD EBOOK →

The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.

Methods in Computational Chemistry

Methods in Computational Chemistry PDF

Author: Stephen Wilson

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 378

ISBN-13: 148991983X

DOWNLOAD EBOOK →

When, forty years ago, as a student of Charles Coulson in Oxford I began work in theoretical chemistry, I was provided with a Brunsviga calculator-a small mechanical device with a handle for propulsion, metal levers for setting the numbers, and a bell that rang to indicate overflow. What has since come to be known as computational chemistry was just beginning. There followed a long period in which the fundamental theory of the "golden age" (1925-1935) was extended and refined and in which the dreams of the early practitioners were gradually turned into hard arithmetic reality. As a still-computing survivor from the early postwar days now enjoying the benefits of unbelievably improved hardware, I am glad to contribute a foreword to this series and to have the opportunity of providing a little historical perspective. After the Brunsviga came the electromechanical machines of the late 1940s and early 1950s, and a great reduction in the burden of calculating molecular wavefunctions. We were now happy. At least for systems con taining a few electrons it was possible to make fully ab initio calculations, even though semiempirical models remained indispensable for most molecules of everyday interest. The 1950 papers of Hall and of Roothaan represented an important milestone along the road to larger-scale non empirical calculations, extending the prewar work of Hartree and Fock from many-electron atoms to many-electron molecules-and thus into "real chemistry.