Machine Vision for Three-Dimensional Scenes

Machine Vision for Three-Dimensional Scenes PDF

Author: Herbert Freeman

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 432

ISBN-13: 0323150632

DOWNLOAD EBOOK →

Machine Vision for Three-Dimensional Scenes contains the proceedings of the workshop "Machine Vision - Acquiring and Interpreting the 3D Scene" sponsored by the Center for Computer Aids for Industrial Productivity (CAIP) at Rutgers University and held in April 1989 in New Brunswick, New Jersey. The papers explore the applications of machine vision in image acquisition and 3D scene interpretation and cover topics such as segmentation of multi-sensor images; the placement of sensors to minimize occlusion; and the use of light striping to obtain range data. Comprised of 14 chapters, this book opens with a discussion on 3D object recognition and the problems that arise when dealing with large object databases, along with solutions to these problems. The reader is then introduced to the free-form surface matching problem and object recognition by constrained search. The following chapters address the problem of machine vision inspection, paying particular attention to the use of eye tracking to train a vision system; images of 3D scenes and the attendant problems of image understanding; the problem of object motion; and real-time range mapping. The final chapter assesses the relationship between the developing machine vision technology and the marketplace. This monograph will be of interest to practitioners in the fields of computer science and applied mathematics.

Three-Dimensional Computer Vision

Three-Dimensional Computer Vision PDF

Author: Yoshiaki Shirai

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 308

ISBN-13: 3642824293

DOWNLOAD EBOOK →

The purpose of computer vision is to make computers capable of understanding environments from visual information. Computer vision has been an interesting theme in the field of artificial intelligence. It involves a variety of intelligent information processing: both pattern processing for extraction of meaningful symbols from visual information and symbol processing for determining what the symbols represent. The term "3D computer vision" is used if visual information has to be interpreted as three-dimensional scenes. 3D computer vision is more challenging because objects are seen from limited directions and some objects are occluded by others. In 1980, the author wrote a book "Computer Vision" in Japanese to introduce an interesting new approach to visual information processing developed so far. Since then computer vision has made remarkable progress: various rangefinders have become available, new methods have been developed to obtain 3D informa tion, knowledge representation frameworks have been proposed, geometric models which were developed in CAD/CAM have been used for computer vision, and so on. The progress in computer vision technology has made it possible to understand more complex 3 D scenes. There is an increasing demand for 3D computer vision. In factories, for example, automatic assembly and inspection can be realized with fewer con straints than conventional ones which employ two-dimensional computer vision.

3D Computer Vision

3D Computer Vision PDF

Author: Christian Wöhler

Publisher: Springer Science & Business Media

Published: 2012-07-23

Total Pages: 390

ISBN-13: 1447141504

DOWNLOAD EBOOK →

This indispensable text introduces the foundations of three-dimensional computer vision and describes recent contributions to the field. Fully revised and updated, this much-anticipated new edition reviews a range of triangulation-based methods, including linear and bundle adjustment based approaches to scene reconstruction and camera calibration, stereo vision, point cloud segmentation, and pose estimation of rigid, articulated, and flexible objects. Also covered are intensity-based techniques that evaluate the pixel grey values in the image to infer three-dimensional scene structure, and point spread function based approaches that exploit the effect of the optical system. The text shows how methods which integrate these concepts are able to increase reconstruction accuracy and robustness, describing applications in industrial quality inspection and metrology, human-robot interaction, and remote sensing.

Three-dimensional Computer Vision

Three-dimensional Computer Vision PDF

Author: Olivier Faugeras

Publisher: MIT Press

Published: 1993

Total Pages: 712

ISBN-13: 9780262061582

DOWNLOAD EBOOK →

This monograph by one of the world's leading vision researchers provides a thorough, mathematically rigorous exposition of a broad and vital area in computer vision: the problems and techniques related to three-dimensional (stereo) vision and motion. The emphasis is on using geometry to solve problems in stereo and motion, with examples from navigation and object recognition. Faugeras takes up such important problems in computer vision as projective geometry, camera calibration, edge detection, stereo vision (with many examples on real images), different kinds of representations and transformations (especially 3-D rotations), uncertainty and methods of addressing it, and object representation and recognition. His theoretical account is illustrated with the results of actual working programs.Three-Dimensional Computer Vision proposes solutions to problems arising from a specific robotics scenario in which a system must perceive and act. Moving about an unknown environment, the system has to avoid static and mobile obstacles, build models of objects and places in order to be able to recognize and locate them, and characterize its own motion and that of moving objects, by providing descriptions of the corresponding three-dimensional motions. The ideas generated, however, can be used indifferent settings, resulting in a general book on computer vision that reveals the fascinating relationship of three-dimensional geometry and the imaging process.

Representations and Techniques for 3D Object Recognition and Scene Interpretation

Representations and Techniques for 3D Object Recognition and Scene Interpretation PDF

Author: Derek Hoiem

Publisher: Morgan & Claypool Publishers

Published: 2011

Total Pages: 172

ISBN-13: 1608457281

DOWNLOAD EBOOK →

One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions

3D Computer Vision

3D Computer Vision PDF

Author: Christian Wöhler

Publisher: Springer Science & Business Media

Published: 2009-07-28

Total Pages: 391

ISBN-13: 3642017320

DOWNLOAD EBOOK →

This work provides an introduction to the foundations of three-dimensional c- puter vision and describes recent contributions to the ?eld, which are of methodical and application-speci?c nature. Each chapter of this work provides an extensive overview of the corresponding state of the art, into which a detailed description of new methods or evaluation results in application-speci?c systems is embedded. Geometric approaches to three-dimensional scene reconstruction (cf. Chapter 1) are primarily based on the concept of bundle adjustment, which has been developed more than 100 years ago in the domain of photogrammetry. The three-dimensional scene structure and the intrinsic and extrinsic camera parameters are determined such that the Euclidean backprojection error in the image plane is minimised, u- ally relying on a nonlinear optimisation procedure. In the ?eld of computer vision, an alternative framework based on projective geometry has emerged during the last two decades, which allows to use linear algebra techniques for three-dimensional scene reconstructionand camera calibration purposes. With special emphasis on the problems of stereo image analysis and camera calibration, these fairly different - proaches are related to each other in the presented work, and their advantages and drawbacks are stated. In this context, various state-of-the-artcamera calibration and self-calibration methods as well as recent contributions towards automated camera calibration systems are described. An overview of classical and new feature-based, correlation-based, dense, and spatio-temporal methods for establishing point c- respondences between pairs of stereo images is given.

Five-Layer Intelligence of the Machine Brain

Five-Layer Intelligence of the Machine Brain PDF

Author: Wen-Feng Wang

Publisher: Springer Nature

Published: 2022-03-15

Total Pages: 223

ISBN-13: 9811902720

DOWNLOAD EBOOK →

This book intends to report the new results of the efforts on the study of Layered Intelligence of the Machine Brain (LIMB). The book collects novel research ideas in LIMB and summarizes the current machine intelligence level as “five layer intelligence”- environments sensing, active learning, cognitive computing, intelligent decision making and automatized execution. The book is likely to be of interest to university researchers, R&D engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms, and applications of LIMB.

Fundamentals of Three-dimensional Digital Image Processing

Fundamentals of Three-dimensional Digital Image Processing PDF

Author: Junichiro Toriwaki

Publisher: Springer Science & Business Media

Published: 2009-05-04

Total Pages: 278

ISBN-13: 184800172X

DOWNLOAD EBOOK →

This book is a detailed description of the basics of three-dimensional digital image processing. A 3D digital image (abbreviated as “3D image” below) is a digitalized representation of a 3D object or an entire 3D space, stored in a computer as a 3D array. Whereas normal digital image processing is concerned with screens that are a collection of square shapes called “pixels” and their corresponding density levels, the “image plane” in three dimensions is represented by a division into cubical graphical elements (called “voxels”) that represent corresponding density levels. Inthecontextofimageprocessing,in manycases3Dimageprocessingwill refer to the input of multiple 2D images and performing processing in order to understand the 3D space (or “scene”) that they depict. This is a result of research into how to use input from image sensors such as television cameras as a basis for learning about a 3D scene, thereby replicating the sense of vision for humans or intelligent robots, and this has been the central problem in image processing research since the 1970s. However, a completely di?erent type of image with its own new problems, the 3D digital image discussed in this book, rapidly took prominence in the 1980s, particularly in the ?eld of medical imaging. These were recordings of human bodies obtained through computed (or “computerized”) tomography (CT),imagesthatrecordednotonlytheexternal,visiblesurfaceofthesubject but also, to some degree of resolution, its internal structure. This was a type of image that no one had experienced before.