Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology

Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology PDF

Author: Seyed Mostafa Kia

Publisher: Springer Nature

Published: 2020-12-30

Total Pages: 319

ISBN-13: 3030668436

DOWNLOAD EBOOK →

This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2020, and the Second International Workshop on Radiogenomics in Neuro-oncology, RNO-AI 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020.* For MLCN 2020, 18 papers out of 28 submissions were accepted for publication. The accepted papers present novel contributions in both developing new machine learning methods and applications of existing methods to solve challenging problems in clinical neuroimaging. For RNO-AI 2020, all 8 submissions were accepted for publication. They focus on addressing the problems of applying machine learning to large and multi-site clinical neuroimaging datasets. The workshop aimed to bring together experts in both machine learning and clinical neuroimaging to discuss and hopefully bridge the existing challenges of applied machine learning in clinical neuroscience. *The workshops were held virtually due to the COVID-19 pandemic.

Radiomics and Radiogenomics in Neuro-oncology

Radiomics and Radiogenomics in Neuro-oncology PDF

Author: Hassan Mohy-ud-Din

Publisher: Springer Nature

Published: 2020-02-24

Total Pages: 100

ISBN-13: 3030401243

DOWNLOAD EBOOK →

This book constitutes the proceedings of the First International Workshop on Radiomics and Radiogenomics in Neuro-oncology, RNO-AI 2019, which was held in conjunction with MICCAI in Shenzhen, China, in October 2019. The 10 full papers presented in this volume were carefully reviewed and selected from 15 submissions. They deal with the development of tools that can automate the analysis and synthesis of neuro-oncologic imaging.

Radiomics and Radiogenomics in Neuro-Oncology

Radiomics and Radiogenomics in Neuro-Oncology PDF

Author: Sanjay Saxena

Publisher: Elsevier

Published: 2024-04-08

Total Pages: 330

ISBN-13: 0443185077

DOWNLOAD EBOOK →

Neuro-oncology broadly encompasses life-threatening brain and spinal cord malignancies, including primary lesions and lesions metastasizing to the central nervous system. It is well suited for diagnosis, classification, and prognosis as well as assessing treatment response. Radiomics and Radiogenomics (R-n-R) have become two central pillars in precision medicine for neuro-oncology.Radiomics is an approach to medical imaging used to extract many quantitative imaging features using different data characterization algorithms, while Radiogenomics, which has recently emerged as a novel mechanism in neuro-oncology research, focuses on the relationship of imaging phenotype and genetics of cancer. Due to the exponential progress of different computational algorithms, AI methods are composed to advance the precision of diagnostic and therapeutic approaches in neuro-oncology.The field of radiomics has been and definitely will remain at the lead of this emerging discipline due to its efficiency in the field of neuro-oncology. Several AI approaches applied to conventional and advanced medical imaging data from the perspective of radiomics are very efficient for tasks such as survival prediction, heterogeneity analysis of cancer, pseudo progression analysis, and infiltrating tumors. Radiogenomics advances our understanding and knowledge of cancer biology, letting noninvasive sampling of the molecular atmosphere with high spatial resolution along with a systems-level understanding of causal heterogeneous molecular and cellular processes. These AI-based R-n-R tools have the potential to stratify patients into more precise initial diagnostic and therapeutic pathways and permit better dynamic treatment monitoring in this period of personalized medicine. While extremely promising, the clinical acceptance of R-n-R methods and approaches will primarily hinge on their resilience to non-standardization across imaging protocols and their capability to show reproducibility across large multi-institutional cohorts.Radiomics and Radiogenomics in Neuro-Oncology: An Artificial Intelligence Paradigm provides readers with a broad and detailed framework for R-n-R approaches with AI in neuro-oncology, the description of cancer biology and genomics study of cancer, and the methods usually implemented for analyzing. Readers will also learn about the current solutions R-n-R can offer for personalized treatments of patients, limitations, and prospects. There is comprehensive coverage of information based on radiomics, radiogenomics, cancer biology, and medical image analysis viewpoints on neuro-oncology, so this in-depth coverage is divided into two Volumes.Volume 1: Radiogenomics Flow Using Artificial Intelligence provides coverage of genomics and molecular study of brain cancer, medical imaging modalities and analysis in neuro-oncology, and prognostic and predictive models using radiomics.Volume 2: Genetics and Clinical Applications provides coverage of imaging signatures for brain cancer molecular characteristics, clinical applications of R-n-R in neuro-oncology, and Machine Learning and Deep Learning AI approaches for R-n-R in neuro-oncology. Includes coverage on the foundational concepts of the emerging fields of radiomics and radiogenomics Covers neural engineering modeling and AI algorithms for the imaging, diagnosis, and predictive modeling of neuro-oncology Presents crucial technologies and software platforms, along with advanced brain imaging techniques such as quantitative imaging using CT, PET, and MRI Provides in-depth technical coverage of computational modeling techniques and applied mathematics for brain tumor segmentation and radiomics features such as extraction and selection

Machine Learning and Artificial Intelligence in Radiation Oncology

Machine Learning and Artificial Intelligence in Radiation Oncology PDF

Author: Barry S. Rosenstein

Publisher: Academic Press

Published: 2023-12-02

Total Pages: 480

ISBN-13: 0128220015

DOWNLOAD EBOOK →

Machine Learning and Artificial Intelligence in Radiation Oncology: A Guide for Clinicians is designed for the application of practical concepts in machine learning to clinical radiation oncology. It addresses the existing void in a resource to educate practicing clinicians about how machine learning can be used to improve clinical and patient-centered outcomes. This book is divided into three sections: the first addresses fundamental concepts of machine learning and radiation oncology, detailing techniques applied in genomics; the second section discusses translational opportunities, such as in radiogenomics and autosegmentation; and the final section encompasses current clinical applications in clinical decision making, how to integrate AI into workflow, use cases, and cross-collaborations with industry. The book is a valuable resource for oncologists, radiologists and several members of biomedical field who need to learn more about machine learning as a support for radiation oncology. Presents content written by practicing clinicians and research scientists, allowing a healthy mix of both new clinical ideas as well as perspectives on how to translate research findings into the clinic Provides perspectives from artificial intelligence (AI) industry researchers to discuss novel theoretical approaches and possibilities on academic collaborations Brings diverse points-of-view from an international group of experts to provide more balanced viewpoints on a complex topic

Machine Learning and Other Artificial Intelligence Applications, An Issue of Neuroimaging Clinics of North America, E-Book

Machine Learning and Other Artificial Intelligence Applications, An Issue of Neuroimaging Clinics of North America, E-Book PDF

Author: Reza Forghani

Publisher: Elsevier Health Sciences

Published: 2020-10-23

Total Pages: 192

ISBN-13: 0323712452

DOWNLOAD EBOOK →

This issue of Neuroimaging Clinics of North America focuses on Artificial Intelligence and Machine Learning and is edited by Dr. Reza Forghani. Articles will include: A Brief History of Artificial Intelligence; Evolution of Approaches for Computerized Image Analysis; Overview of Machine Learning Part 1: Classic Approaches; Overview of Machine Learning Part 2: Artificial Neural Networks & Deep Learning; Overview of Natural Language Processing; Artificial Intelligence & Stroke Imaging: An East Coast Perspective; Artificial Intelligence & Stroke Imaging: A West Coast Perspective; Artificial Intelligence Applications for Brain Tumor Imaging; Diverse Applications of Artificial Intelligence in Neuroradiology; Artificial Intelligence Applications for Head and Neck Imaging; Artificial Intelligence Applications for Predictive Analytics and Workflow Optimization; Artificial Intelligence, Advanced Visualization, and 3D Printing; Ethical & Legal Considerations for Artificial Intelligence; Comprehensive (or 360) Artificial Intelligence: Beyond Image Interpretation Alone, and more!

Radiomics and Radiogenomics

Radiomics and Radiogenomics PDF

Author: Ruijiang Li

Publisher: CRC Press

Published: 2019-07-09

Total Pages: 501

ISBN-13: 135120825X

DOWNLOAD EBOOK →

Radiomics and Radiogenomics: Technical Basis and Clinical Applications provides a first summary of the overlapping fields of radiomics and radiogenomics, showcasing how they are being used to evaluate disease characteristics and correlate with treatment response and patient prognosis. It explains the fundamental principles, technical bases, and clinical applications with a focus on oncology. The book’s expert authors present computational approaches for extracting imaging features that help to detect and characterize disease tissues for improving diagnosis, prognosis, and evaluation of therapy response. This book is intended for audiences including imaging scientists, medical physicists, as well as medical professionals and specialists such as diagnostic radiologists, radiation oncologists, and medical oncologists. Features Provides a first complete overview of the technical underpinnings and clinical applications of radiomics and radiogenomics Shows how they are improving diagnostic and prognostic decisions with greater efficacy Discusses the image informatics, quantitative imaging, feature extraction, predictive modeling, software tools, and other key areas Covers applications in oncology and beyond, covering all major disease sites in separate chapters Includes an introduction to basic principles and discussion of emerging research directions with a roadmap to clinical translation

Machine and Deep Learning in Oncology, Medical Physics and Radiology

Machine and Deep Learning in Oncology, Medical Physics and Radiology PDF

Author: Issam El Naqa

Publisher: Springer Nature

Published: 2022-02-02

Total Pages: 514

ISBN-13: 3030830470

DOWNLOAD EBOOK →

This book, now in an extensively revised and updated second edition, provides a comprehensive overview of both machine learning and deep learning and their role in oncology, medical physics, and radiology. Readers will find thorough coverage of basic theory, methods, and demonstrative applications in these fields. An introductory section explains machine and deep learning, reviews learning methods, discusses performance evaluation, and examines software tools and data protection. Detailed individual sections are then devoted to the use of machine and deep learning for medical image analysis, treatment planning and delivery, and outcomes modeling and decision support. Resources for varying applications are provided in each chapter, and software code is embedded as appropriate for illustrative purposes. The book will be invaluable for students and residents in medical physics, radiology, and oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.

Machine Learning in Clinical Neuroimaging

Machine Learning in Clinical Neuroimaging PDF

Author: Ahmed Abdulkadir

Publisher: Springer Nature

Published: 2021-09-22

Total Pages: 185

ISBN-13: 3030875865

DOWNLOAD EBOOK →

This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2021, held on September 27, 2021, in conjunction with MICCAI 2021. The workshop was held virtually due to the COVID-19 pandemic. The 17 papers presented in this book were carefully reviewed and selected from 27 submissions. They were organized in topical sections named: computational anatomy and brain networks and time series.

Machine Learning in Clinical Neuroscience

Machine Learning in Clinical Neuroscience PDF

Author: Victor E. Staartjes

Publisher: Springer Nature

Published: 2021-12-03

Total Pages: 343

ISBN-13: 303085292X

DOWNLOAD EBOOK →

This book bridges the gap between data scientists and clinicians by introducing all relevant aspects of machine learning in an accessible way, and will certainly foster new and serendipitous applications of machine learning in the clinical neurosciences. Building from the ground up by communicating the foundational knowledge and intuitions first before progressing to more advanced and specific topics, the book is well-suited even for clinicians without prior machine learning experience. Authored by a wide array of experienced global machine learning groups, the book is aimed at clinicians who are interested in mastering the basics of machine learning and who wish to get started with their own machine learning research. The volume is structured in two major parts: The first uniquely introduces all major concepts in clinical machine learning from the ground up, and includes step-by-step instructions on how to correctly develop and validate clinical prediction models. It also includes methodological and conceptual foundations of other applications of machine learning in clinical neuroscience, such as applications of machine learning to neuroimaging, natural language processing, and time series analysis. The second part provides an overview of some state-of-the-art applications of these methodologies. The Machine Intelligence in Clinical Neuroscience (MICN) Laboratory at the Department of Neurosurgery of the University Hospital Zurich studies clinical applications of machine intelligence to improve patient care in clinical neuroscience. The group focuses on diagnostic, prognostic and predictive analytics that aid in decision-making by increasing objectivity and transparency to patients. Other major interests of our group members are in medical imaging, and intraoperative applications of machine vision.