Low-Temperature Energy Systems with Applications of Renewable Energy

Low-Temperature Energy Systems with Applications of Renewable Energy PDF

Author: Andriy Redko

Publisher: Academic Press

Published: 2019-10-23

Total Pages: 394

ISBN-13: 0128166029

DOWNLOAD EBOOK →

Low-Temperature Energy Systems with Applications of Renewable Energy investigates a wide variety of low-temperature energy applications in residential, commercial, institutional, and industrial areas. It addresses the basic principles that form the groundwork for more efficient energy conversion processes and includes detailed practical methods for carrying out these critical processes. This work considers new directions in the engineering use of technical thermodynamics and energy, including more in-depth studies of the use of renewable sources, and includes worked numerical examples, review questions, and practice problems to allow readers to test their own comprehension of the material. With detailed explanations, methods, models, and algorithms, Low-Temperature Energy Systems with Applications of Renewable Energy is a valuable reference for engineers and scientists in the field of renewable energy, as well as energy researchers and academics. Features end-of chapter review sections with questions and exercises for practical study and utilization. Presents methods for a great variety of energy applications to improve their energy operations. Applies real-world data to demonstrate the impact of low-temperature energy systems on renewable energy use today.

Solar Energy Sciences and Engineering Applications

Solar Energy Sciences and Engineering Applications PDF

Author: Napoleon Enteria

Publisher: CRC Press

Published: 2013-12-10

Total Pages: 685

ISBN-13: 0203762053

DOWNLOAD EBOOK →

Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is du

Solar Thermal Energy Utilization

Solar Thermal Energy Utilization PDF

Author: Manfred Becker

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 299

ISBN-13: 3662016265

DOWNLOAD EBOOK →

The ener~y crisis in 1973 and 1979 initiated a great number of activities and programs for low and high temperature applica tion of solar energy. Synthetic fuels and chemicals produced by solar energy is one of them, where temperatures in the range of 600-1000°C or even higher are needed. In principle such high temperatures can be produced in solar towers. For electricity tower plants production, the feasibility and operation of solar Solar Power has been examined during the SSPS - project (Small System) in Almeria, Spain. extend The objective of Solar Thermal Energy Utilization is to field the experience from the former SSPS - program in to the of solar produced synthetic fuels. New materials and technolo gies have to be developed in order to research this goal. Metallic components now in use for solar receivers need to be improved with respect to transient operation or possibly replaced by ceramics. High temperature processes, like steam-methane reforming, coal conversion and hydrogen produc tion need to be developed or at least adapted for the unconven tional solar operation. Therefore Solar Thermal Energy Utiliza tion is a long term program, which needs time for its develop ment much more time than the intervals expected in between further energy crisis. The "Studies on Technology and Applica tion on Solar Energy Utilization" is a necessary step in the right direction in order to prepare for the energy problems in the future.

Solar Collectors

Solar Collectors PDF

Author: Martín Picón-Núñez

Publisher:

Published: 2018

Total Pages: 0

ISBN-13: 9781536131215

DOWNLOAD EBOOK →

This book is intended to provide an engineering point of view and the design tools for low temperature solar collectors, as well as their networks in large solar installations for the integration of solar energy in processing industries. To this end, the book covers the description of existing solar technology, performance enhancement techniques for single units, hydrodynamics and its influence on flow distribution inside tubes, its effect upon thermal efficiency and pressure drop profiles. A detailed graphical description of the thermo-hydraulic behavior using experimentally validated Computational Fluid Dynamics simulations are described. An important contribution is the introduction of the main concepts to design and specify the structure of solar collector networks based on the reconciliation of the thermal and hydraulic lengths. The thermal performance is analyzed as a function of the velocity of the fluid and its relation to the rate of heat transfer. Likewise, velocity is analyzed in connection to the pressure drop. This approach allows the engineer to determine the structure of a solar collector network, which is defined by two parameters: the number of parallel sets of collectors and the number of collectors per set to achieve the process thermal needs at the specified temperature within the limitations of the pressure drop. These tools are put forward within the frame of flexible plant operation.