Lignocellulose Conversion

Lignocellulose Conversion PDF

Author: Vincenza Faraco

Publisher: Springer Science & Business Media

Published: 2013-06-12

Total Pages: 207

ISBN-13: 3642378617

DOWNLOAD EBOOK →

Bioethanol has been recognized as a potential alternative to petroleum-derived transportation fuels. Even if cellulosic biomass is less expensive than corn and sugarcane, the higher costs for its conversion make the near-term price of cellulosic ethanol higher than that of corn ethanol and even more than that of sugarcane ethanol. Conventional process for bioethanol production from lignocellulose includes a chemical/physical pre-treatment of lignocellulose for lignin removal, mostly based on auto hydrolysis and acid hydrolysis, followed by saccharification of the free accessible cellulose portions of the biomass. The highest yields of fermentable sugars from cellulose portion are achieved by means of enzymatic hydrolysis, currently carried out using a mix of cellulases from the fungus Trichoderma reesei. Reduction of (hemi)cellulases production costs is strongly required to increase competitiveness of second generation bioethanol production. The final step is the fermentation of sugars obtained from saccharification, typically performed by the yeast Saccharomyces cerevisiae. The current process is optimized for 6-carbon sugars fermentation, since most of yeasts cannot ferment 5-carbon sugars. Thus, research is aimed at exploring new engineered yeasts abilities to co-ferment 5- and 6-carbon sugars. Among the main routes to advance cellulosic ethanol, consolidate bio-processing, namely direct conversion of biomass into ethanol by a genetically modified microbes, holds tremendous potential to reduce ethanol production costs. Finally, the use of all the components of lignocellulose to produce a large spectra of biobased products is another challenge for further improving competitiveness of second generation bioethanol production, developing a biorefinery.

Lignocellulosic Biomass to Liquid Biofuels

Lignocellulosic Biomass to Liquid Biofuels PDF

Author: Abu Yousuf

Publisher: Academic Press

Published: 2019-11-20

Total Pages: 360

ISBN-13: 0128162805

DOWNLOAD EBOOK →

Lignocellulosic Biomass to Liquid Biofuels explores the existing technologies and most recent developments for the production of second generation liquid biofuels, providing an introduction to lignocellulosic biomass and the processes for its conversion into biofuels. The book demonstrates biorefinery concepts compared with petro refinery, as well as the challenges of second generation biofuels processing. In addition to current pre-treatment techniques and their technical, environmental and economic implications, chapters included also further examine the particularities of conversion processes for bioethanol, biobutanol and biodiesel through chemical, biochemical and combined approaches. Finally, the book looks into concepts and tools for techno-economic and environmental analysis, which include supply chain assessment, by-products, zero-waste techniques and process evaluation and optimization. Lignocellulosic Biomass to Liquid Biofuels is particularly useful for researchers in the field of liquid biofuels seeking alternative chemical and biochemical pathways or those interested advanced methods to calculate maximum yield for each process and methods to simulate the implications and costs of scaling up. Furthermore, with the introduction provided by this volume, researchers and graduate students entering the field will be able to quickly get up to speed and identify knowledge gaps in existing and upcoming technology the book’s comprehensive overview. Examines the state-of-the-art technology for liquid biofuels production from lignocellulosic biomass Provides a comprehensive overview of the existing chemical and biochemical processes for second generation biofuel conversion Presents tools for the techno-economic and environmental analysis of technologies, as well as for the scale-up simulation of conversion processes

Lignocellulose Bioconversion Through White Biotechnology

Lignocellulose Bioconversion Through White Biotechnology PDF

Author: Anuj Kumar Chandel

Publisher: John Wiley & Sons

Published: 2022-09-13

Total Pages: 436

ISBN-13: 1119735955

DOWNLOAD EBOOK →

Lignocellulose Bioconversion Through White Biotechnology Comprehensive resource summarizing the recent technological advancements in white biotechnology and biomass conversion into fuels, chemicals, food, and more Lignocellulose Bioconversion Through White Biotechnology presents cutting-edge information on lignocellulose biomass conversion, detailing how white biotechnology can develop sustainable biomass pretreatment methods, effective plant cell wall degrading enzymes to yield high quality cellulosic sugars, and the eventual conversion of these sugars into fuels, chemicals, and other materials. To provide comprehensive coverage of the subject, the work offers in-depth critical analysis into both techno-economic and life cycle analysis of lignocellulose-based products. Each of the 16 chapters, written by a well-qualified and established researchers, academics, or engineers, presents key information on a specific facet of lignocellulose-based products. Topics covered include: Lignocellulose feedstock availability, types of feedstock, and potential crops that are of high interest to the industry Lignocellulose bioconversion, including both foundational technical aspects and new modern developments Plant cell wall degrading enzymes, including cellulase improvement and production challenges/solutions when scaling up Improvements and challenges when considering fermenting microorganisms for cellulosic sugars utilization Scaling up of lignocellulose conversion, including insight into current challenges and future practices Techno-economic aspects of lignocellulose feedstock conversion, green consumerism and industrialization aspects of renewable fuels/chemicals Students, academics, researchers, bio-business analysts, and policy-makers working on sustainable fuels, chemicals, materials, and renewable fuels can use Lignocellulose Bioconversion Through White Biotechnology to gain invaluable expert insight into the subject, its current state of the art, and potential exciting future avenues to explore.

Handbook of Biomass Valorization for Industrial Applications

Handbook of Biomass Valorization for Industrial Applications PDF

Author: Shahid ul-Islam

Publisher: John Wiley & Sons

Published: 2022-01-05

Total Pages: 555

ISBN-13: 1119818796

DOWNLOAD EBOOK →

HANDBOOK of BIOMASS VALORIZATION for INDUSTRIAL APPLICATIONS The handbook provides a comprehensive view of cutting-edge research on biomass valorization, from advanced fabrication methodologies through useful derived materials, to current and potential application sectors. Industrial sectors, such as food, textiles, petrochemicals and pharmaceuticals, generate massive amounts of waste each year, the disposal of which has become a major issue worldwide. As a result, implementing a circular economy that employs sustainable practices in waste management is critical for any industry. Moreover, fossil fuels, which are the primary sources of fuel in the transportation sector, are also being rapidly depleted at an alarming rate. Therefore, to combat these global issues without increasing our carbon footprint, we must look for renewable resources to produce chemicals and biomaterials. In that context, agricultural waste materials are gaining popularity as cost-effective and abundantly available alternatives to fossil resources for the production of a variety of value-added products, including renewable fuels, fuel components, and fuel additives. Handbook of Biomass Valorization for Industrial Applications investigates current and emerging feedstocks, as well as provides in-depth technical information on advanced catalytic processes and technologies that enable the development of all possible alternative energy sources. The 22 chapters of this book comprehensively cover the valorization of agricultural wastes and their various uses in value-added applications like energy, biofuels, fertilizers, and wastewater treatment. Audience The book is intended for a very broad audience working in the fields of materials sciences, chemical engineering, nanotechnology, energy, environment, chemistry, etc. This book will be an invaluable reference source for the libraries in universities and industrial institutions, government and independent institutes, individual research groups, and scientists working in the field of valorization of biomass.

Recent Advances in Bioconversion of Lignocellulose to Biofuels and Value Added Chemicals within the Biorefinery Concept

Recent Advances in Bioconversion of Lignocellulose to Biofuels and Value Added Chemicals within the Biorefinery Concept PDF

Author: Edivaldo Ximenes Ferreira Filho

Publisher: Elsevier

Published: 2020-05-19

Total Pages: 344

ISBN-13: 0128182237

DOWNLOAD EBOOK →

Recent Advances in Bioconversion of Lignocellulose to Biofuels and Value Added Chemicals within the Biorefinery Concept covers the latest developments on biorefineries, along with their potential use for the transformation of residues into a broad range of more valuable products. Within this context, the book discusses the enzymatic conversion process of lignocellulosic biomass to generate fuels and other products in a unified approach. It focuses on new approaches to increase enzymatic production by microorganisms, the action of microbial inhibitors, and strategies for their removal. Furthermore, it outlines the benefits of this integrated approach for generating value-added products and the benefits to social and economic aspects, circular bio economy, HUBs and perspectives. Covers the mechanisms of enzymatic conversion of biomass into value-added products Discusses bioproducts derived from lignocellulose and their applications Includes discussions on design, development and the technologies needed for the sustainable manufacture of materials and chemicals Offers a techno-economic evaluation of biorefineries for integrated sustainability assessments Discusses the socioeconomic and cultural-economic perspectives of the lignocellulosic biorefinery Presents a virtual biorefinery as an integrated approach to evaluate the lignocellulose production chain

Lignocellulosic Biomass to Value-Added Products

Lignocellulosic Biomass to Value-Added Products PDF

Author: Mihir Kumar Purkait

Publisher: Elsevier

Published: 2021-06-17

Total Pages: 242

ISBN-13: 0128235918

DOWNLOAD EBOOK →

Lignocellulosic Biomass to Value-Added Products: Fundamental Strategies and Technological Advancements focuses on fundamental and advanced topics surrounding technologies for the conversion process of lignocellulosic biomass. Each and every concept related to the utilization of biomass in the process of conversion is elaborately explained, with importance given to minute details. Advanced level technologies involved in the conversion of biomass into biofuels, like bioethanol and biobutanol, are addressed, along with the process of pyrolysis. Readers of this book will become fully acquainted with the field of lignocellulosic conversion, from its basics to current research accomplishments. The uniqueness of the book lies in the fact that it covers each and every topic related to biomass and its conversion into value-added products. Technologies involved in the major areas of pretreatment, hydrolysis and fermentation are explained precisely. Additional emphasis is given to the analytical part, especially the established protocols for rapid and accurate quantification of total sugars obtained from lignocellulosic biomass. Includes chapters arranged in a flow-through manner Discusses mechanistic insights in different phenomena using colorful figures for quick understanding Provides the most up-to-date information on all aspects of the conversion of individual components of lignocellulosic biomass

Bioalcohol Production

Bioalcohol Production PDF

Author: Keith W. Waldron

Publisher: Elsevier

Published: 2010-05-24

Total Pages: 497

ISBN-13: 1845699610

DOWNLOAD EBOOK →

Bioethanol is one of the main biofuels currently used as a petroleum-substitute in transport applications. However, conflicts over food supply and land use have made its production and utilisation a controversial topic. Second generation bioalcohol production technology, based on (bio)chemical conversion of non-food lignocellulose, offers potential advantages over existing, energy-intensive bioethanol production processes. Food vs. fuel pressures may be reduced by utilising a wider range of lignocellulosic biomass feedstocks, including energy crops, cellulosic residues, and, particularly, wastes. Bioalcohol production covers the process engineering, technology, modelling and integration of the entire production chain for second generation bioalcohol production from lignocellulosic biomass. Primarily reviewing bioethanol production, the book’s coverage extends to the production of longer-chain bioalcohols which will be elemental to the future of the industry. Part one reviews the key features and processes involved in the pretreatment and fractionation of lignocellulosic biomass for bioalcohol production, including hydrothermal and thermochemical pretreatment, and fractionation to separate out valuable process feedstocks. Part two covers the hydrolysis (saccharification) processes applicable to pretreated feedstocks. This includes both acid and enzymatic approaches and also importantly covers the development of particular enzymes to improve this conversion step. This coverage is extended in Part three, with chapters reviewing integrated hydrolysis and fermentation processes, and fermentation and co-fermentation challenges of lignocellulose-derived sugars, as well as separation and purification processes for bioalcohol extraction. Part four examines the analysis, monitoring and modelling approaches relating to process and quality control in the pretreatment, hydrolysis and fermentation steps of lignocellulose-to-bioalcohol production. Finally, Part five discusses the life-cycle assessment of lignocellulose-to-bioalcohol production, as well as the production of valuable chemicals and longer-chain alcohols from lignocellulosic biomass. With its distinguished international team of contributors, Bioalcohol production is a standard reference for fuel engineers, industrial chemists and biochemists, plant scientists and researchers in this area. Provides an overview of the life-cycle assessment of lignocelluloses-to-bioalcohol production Reviews the key features and processes involved in the pre-treatment and fractionation of lignocellulosic biomass for bioalcohol production Examines the analysis, monitoring and modelling approaches relating to process and quality control in pre-treatment, hydrolysis and fermentation

Microbial production of cis,cis-muconic acid from hydrothermally converted lignocellulose

Microbial production of cis,cis-muconic acid from hydrothermally converted lignocellulose PDF

Author: Sören Starck

Publisher: Cuvillier Verlag

Published: 2022-03-17

Total Pages: 134

ISBN-13: 3736965893

DOWNLOAD EBOOK →

Cis,cis-muconic acid receives increasing interest to be produced from renewables. Catabolic microbial pathways can be tailored to accumulate cis,cis-muconic acid from a range of aromatic compounds. A renewable, sustainable and under-valued resource for aromatics is lignin. In this work, using hydrothermal conversion, lignin was depolymerized into hydrolysates with up to 615 mM aromatic monomer content. Catechol-rich hydrolysates were generated for bioconversion with the previously developed cis,cis-muconic acid producers P. putida MA-9 and C. glutamicum MA-2, whereas hydrolysates were guaiacol-rich for Amycolatopsis sp. MA-2. When grown with glucose as a co-substrate, C. glutamicum MA-2 yielded 2.6 g L⁻¹ (100 % yield) cis,cis-muconic acid from catechol. Towards an even more sustainable process, glucose was then replaced by hemicellulose, a non-food renewable. Hemicellulose, a co-constituent of lignin in lignocellulose, was hydrothermally converted into a mixture of C₅ and C₆ sugars. As hemicellulose was mainly converted into xylose (91 % yield), C. glutamicum MA-2 was engineered to utilize this pentose. Fed-batch bioconversion on a catechol-rich Kraft lignin hydrolysate as well as a hemicellulose hydrolysate using C. glutamicum MA-4 yielded 4 g L⁻¹ muconic acids. As the developed process was non-competitive to feed and food, it is a promising starting point for future application in bio-based industrial settings.