Lectures on Minimal Surfaces: Introduction, fundamentals, geometry and basic boundary value problems

Lectures on Minimal Surfaces: Introduction, fundamentals, geometry and basic boundary value problems PDF

Author: Johannes C. C. Nitsche

Publisher:

Published: 1989

Total Pages: 563

ISBN-13: 9780521244275

DOWNLOAD EBOOK →

This book is a revised and translated version of the first five chapters of Vorlesungen ^D"uber Minimalfl^D"achen. It deals with the parametric minimal surface in Euclidean space. The author presents a broad survey that extends from the classical beginnings to the current situation while highlighting many of the subject's main features and interspersing the mathematical development with pertinent historical remarks.

The Global Theory of Minimal Surfaces in Flat Spaces

The Global Theory of Minimal Surfaces in Flat Spaces PDF

Author: W.H. III Meeks

Publisher: Springer

Published: 2004-10-11

Total Pages: 124

ISBN-13: 3540456090

DOWNLOAD EBOOK →

In the second half of the twentieth century the global theory of minimal surface in flat space had an unexpected and rapid blossoming. Some of the classical problems were solved and new classes of minimal surfaces found. Minimal surfaces are now studied from several different viewpoints using methods and techniques from analysis (real and complex), topology and geometry. In this lecture course, Meeks, Ros and Rosenberg, three of the main architects of the modern edifice, present some of the more recent methods and developments of the theory. The topics include moduli, asymptotic geometry and surfaces of constant mean curvature in the hyperbolic space.

A Course in Minimal Surfaces

A Course in Minimal Surfaces PDF

Author: Tobias Holck Colding

Publisher: American Mathematical Society

Published: 2024-01-18

Total Pages: 330

ISBN-13: 1470476401

DOWNLOAD EBOOK →

Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.

Lectures on Minimal Surfaces: Volume 1, Introduction, Fundamentals, Geometry and Basic Boundary Value Problems

Lectures on Minimal Surfaces: Volume 1, Introduction, Fundamentals, Geometry and Basic Boundary Value Problems PDF

Author: Johannes C. C. Nitsche

Publisher: Cambridge University Press

Published: 2011-03-03

Total Pages: 0

ISBN-13: 9780521137782

DOWNLOAD EBOOK →

This 1989 monograph deals with parametric minimal surfaces in Euclidean space. The author presents a broad survey which extends from the classical beginnings to the current situation whilst highlighting many of the subject's main features and interspersing the mathematical development with pertinent historical remarks. The presentation is complete and is complemented by a bibliography of nearly 1600 references. The careful expository style and emphasis on geometric aspects are extremely valuable. Moreover, in the years leading up to the publication of this book, the theory of minimal surfaces was finding increasing application to other areas of mathematics and the physical sciences ensuring that this account will appeal to non-specialists as well.

Geometric Measure Theory and Minimal Surfaces

Geometric Measure Theory and Minimal Surfaces PDF

Author: E. Bombieri

Publisher: Springer Science & Business Media

Published: 2011-06-04

Total Pages: 227

ISBN-13: 3642109705

DOWNLOAD EBOOK →

W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi’s measure and thin obstacles.

Minimal Surfaces and Functions of Bounded Variation

Minimal Surfaces and Functions of Bounded Variation PDF

Author: Giusti

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 250

ISBN-13: 1468494864

DOWNLOAD EBOOK →

The problem of finding minimal surfaces, i. e. of finding the surface of least area among those bounded by a given curve, was one of the first considered after the foundation of the calculus of variations, and is one which received a satis factory solution only in recent years. Called the problem of Plateau, after the blind physicist who did beautiful experiments with soap films and bubbles, it has resisted the efforts of many mathematicians for more than a century. It was only in the thirties that a solution was given to the problem of Plateau in 3-dimensional Euclidean space, with the papers of Douglas [DJ] and Rado [R T1, 2]. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. It was not until thirty years later that the problem of Plateau was successfully attacked in its full generality, by several authors using measure-theoretic methods; in particular see De Giorgi [DG1, 2, 4, 5], Reifenberg [RE], Federer and Fleming [FF] and Almgren [AF1, 2]. Federer and Fleming defined a k-dimensional surface in IR" as a k-current, i. e. a continuous linear functional on k-forms. Their method is treated in full detail in the splendid book of Federer [FH 1].