Lectures on Advanced Computational Methods in Mechanics

Lectures on Advanced Computational Methods in Mechanics PDF

Author: Johannes Kraus

Publisher: Walter de Gruyter

Published: 2011-12-22

Total Pages: 241

ISBN-13: 3110927098

DOWNLOAD EBOOK →

This book contains four survey papers related to different topics in computational mechanics, in particular (1) novel discretization and solver techniques in mechanics and (2) inverse, control, and optimization problems in mechanics. These topics were considered in lectures, seminars, tutorials, and workshops at the Special Semester on Computational Mechanics held at the Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz, Austria, in December 2005.

Computer Methods in Mechanics

Computer Methods in Mechanics PDF

Author: Mieczyslaw Kuczma

Publisher: Springer Science & Business Media

Published: 2010-03-10

Total Pages: 534

ISBN-13: 364205241X

DOWNLOAD EBOOK →

Prominent scientists present the latest achievements in computational methods and mechanics in this book. These lectures were held at the CMM 2009 conference.

Computer Methods in Mechanics

Computer Methods in Mechanics PDF

Author: Mieczyslaw Kuczma

Publisher:

Published: 2010

Total Pages:

ISBN-13: 9783642052743

DOWNLOAD EBOOK →

Prominent scientists present the latest achievements in computational methods and mechanics in this book. These lectures were held at the CMM 2009 conference.

Computational Methods in Physics

Computational Methods in Physics PDF

Author: Simon Širca

Publisher: Springer

Published: 2018-06-21

Total Pages: 880

ISBN-13: 3319786199

DOWNLOAD EBOOK →

This book is intended to help advanced undergraduate, graduate, and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues, as well as optimization of program execution speeds. Numerous examples are given throughout the chapters, followed by comprehensive end-of-chapter problems with a more pronounced physics background, while less stress is given to the explanation of individual algorithms. The readers are encouraged to develop a certain amount of skepticism and scrutiny instead of blindly following readily available commercial tools. The second edition has been enriched by a chapter on inverse problems dealing with the solution of integral equations, inverse Sturm-Liouville problems, as well as retrospective and recovery problems for partial differential equations. The revised text now includes an introduction to sparse matrix methods, the solution of matrix equations, and pseudospectra of matrices; it discusses the sparse Fourier, non-uniform Fourier and discrete wavelet transformations, the basics of non-linear regression and the Kolmogorov-Smirnov test; it demonstrates the key concepts in solving stiff differential equations and the asymptotics of Sturm-Liouville eigenvalues and eigenfunctions. Among other updates, it also presents the techniques of state-space reconstruction, methods to calculate the matrix exponential, generate random permutations and compute stable derivatives.

Advanced Topics in Computational Partial Differential Equations

Advanced Topics in Computational Partial Differential Equations PDF

Author: Hans Petter Langtangen

Publisher: Springer Science & Business Media

Published: 2012-09-22

Total Pages: 676

ISBN-13: 3642182372

DOWNLOAD EBOOK →

A gentle introduction to advanced topics such as parallel computing, multigrid methods, and special methods for systems of PDEs. The goal of all chapters is to ‘compute’ solutions to problems, hence algorithmic and software issues play a central role. All software examples use the Diffpack programming environment - some experience with Diffpack is required. There are also some chapters covering complete applications, i.e., the way from a model, expressed as systems of PDEs, through to discretization methods, algorithms, software design, verification, and computational examples. Suitable for readers with a background in basic finite element and finite difference methods for partial differential equations.

Numerical Methods in Computational Mechanics

Numerical Methods in Computational Mechanics PDF

Author: Jamshid Ghaboussi

Publisher: CRC Press

Published: 2016-11-25

Total Pages: 219

ISBN-13: 1315351641

DOWNLOAD EBOOK →

This book explores the numerical algorithms underpinning modern finite element based computational mechanics software. It covers all the major numerical methods that are used in computational mechanics. It reviews the basic concepts in linear algebra and advanced matrix theory, before covering solution of systems of equations, symmetric eigenvalue solution methods, and direct integration of discrete dynamic equations of motion, illustrated with numerical examples. This book suits a graduate course in mechanics based disciplines, and will help software developers in computational mechanics. Increased understanding of the underlying numerical methods will also help practicing engineers to use the computational mechanics software more effectively.

An Advanced Course in Computational Nuclear Physics

An Advanced Course in Computational Nuclear Physics PDF

Author: Morten Hjorth-Jensen

Publisher: Springer

Published: 2017-05-09

Total Pages: 644

ISBN-13: 3319533363

DOWNLOAD EBOOK →

This graduate-level text collects and synthesizes a series of ten lectures on the nuclear quantum many-body problem. Starting from our current understanding of the underlying forces, it presents recent advances within the field of lattice quantum chromodynamics before going on to discuss effective field theories, central many-body methods like Monte Carlo methods, coupled cluster theories, the similarity renormalization group approach, Green’s function methods and large-scale diagonalization approaches. Algorithmic and computational advances show particular promise for breakthroughs in predictive power, including proper error estimates, a better understanding of the underlying effective degrees of freedom and of the respective forces at play. Enabled by recent improvements in theoretical, experimental and numerical techniques, the state-of-the art applications considered in this volume span the entire range, from our smallest components – quarks and gluons as the mediators of the strong force – to the computation of the equation of state for neutron star matter. The lectures presented provide an in-depth exposition of the underlying theoretical and algorithmic approaches as well details of the numerical implementation of the methods discussed. Several also include links to numerical software and benchmark calculations, which readers can use to develop their own programs for tackling challenging nuclear many-body problems.

Advances in Computational Nonlinear Mechanics

Advances in Computational Nonlinear Mechanics PDF

Author: I.S. Doltsinis

Publisher: Springer

Published: 2014-05-04

Total Pages: 248

ISBN-13: 3709128285

DOWNLOAD EBOOK →

Advanced computational methods in nonlinear mechanics of solids and fluids are dealt with in this volume. Contributions consider large deformations of structures and solids, problems in nonlinear dynamics, aspects of earthquake analysis, coupled problems, convection-dominated phenomena, and compressible and incompressible viscous flows. Selected applications indicate the relevance of the analysis to the demands of industry and science. The contributors are from research institutions well-known for their work in this field.

Advanced Finite Element Methods with Applications

Advanced Finite Element Methods with Applications PDF

Author: Thomas Apel

Publisher: Springer

Published: 2019-06-28

Total Pages: 428

ISBN-13: 3030142442

DOWNLOAD EBOOK →

Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension. This book features overview papers and original research articles from participants of the 30th Chemnitz Finite Element Symposium, which itself has a 40-year history. Covering topics including numerical methods for equations with fractional partial derivatives; isogeometric analysis and other novel discretization methods, like space-time finite elements and boundary elements; analysis of a posteriori error estimates and adaptive methods; enhancement of efficient solvers of the resulting systems of equations, discretization methods for partial differential equations on surfaces; and methods adapted to applications in solid and fluid mechanics, it offers readers insights into the latest results.