Learning Science in the Schools

Learning Science in the Schools PDF

Author: Shawn M. Glynn

Publisher: Routledge

Published: 2012-10-12

Total Pages: 393

ISBN-13: 1136487719

DOWNLOAD EBOOK →

Science -- and the technology derived from it -- is having a dramatic impact on the quality of our personal lives and the environment around us. Science will have an even greater impact on the lives of our students. The lives of scientifically literate students will be enriched by their understanding, appreciation, and enjoyment of the natural world. To prosper in the near future, all students must become scientifically literate and embrace the notion of life-long learning in science. Without scientific literacy, it will become impossible for students to make informed decisions about the interrelated educational, scientific, and social issues that will confront them in the future. Intended for science teachers, teacher educators, researchers, and administrators, this volume is concerned with the innovative research that is reforming how science is learned in schools. The chapters provide overviews of current research and illustrate how the findings of this research are being applied in schools. This research-based knowledge is essential for effective science instruction. The contributors are leading authorities in science education and their chapters draw clear connections among research, theory, and classroom practice. They provide excellent examples from science classes in which their research has reformed practice. This book will help educators develop the scientific literacy of students. It bridges the gap between cutting-edge research and classroom practice to provide educators with the knowledge they need to foster students' scientific literacy.

Schools for Thought

Schools for Thought PDF

Author: John T. Bruer

Publisher: MIT Press

Published: 1994

Total Pages: 342

ISBN-13: 9780262521963

DOWNLOAD EBOOK →

Schools for Thought provides a straightforward, general introduction to cognitive research and illustrates its importance for educational change. If we want to improve educational opportunities and outcomes for all children, we must start applying what we know about mental functioning--how children think, learn, and remember in our schools. We must apply cognitive science in the classroom. Schools for Thought provides a straightforward, general introduction to cognitive research and illustrates its importance for educational change. Using classroom examples, Bruer shows how applying cognitive research can dramatically improve students' transitions from lower-level rote skills to advanced proficiency in reading, writing, mathematics, and science. Cognitive research, he points out, is also beginning to suggest how we might better motivate students, design more effective tools for assessing them, and improve the training of teachers. He concludes with a chapter on how effective school reform demands that we expand our understanding of teaching and learning and that we think about education in new ways. Debates and discussions about the reform of American education suffer from a lack of appreciation of the complexity of learning and from a lack of understanding about the knowledge base that is available for the improvement of educational practice. Politicians, business leaders, and even many school superintendents, principals, and teachers think that educational problems can be solved by changing school management structures or by creating a market in educational services. Bruer argues that improvement depends instead on changing student-teacher interactions. It is these changes, guided by cognitive research, that will create more effective classroom environments. A Bradford Book

Taking Science to School

Taking Science to School PDF

Author: National Research Council

Publisher: National Academies Press

Published: 2007-04-16

Total Pages: 404

ISBN-13: 0309133831

DOWNLOAD EBOOK →

What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.

Learning Science in Informal Environments

Learning Science in Informal Environments PDF

Author: National Research Council

Publisher: National Academies Press

Published: 2009-05-27

Total Pages: 348

ISBN-13: 0309141133

DOWNLOAD EBOOK →

Informal science is a burgeoning field that operates across a broad range of venues and envisages learning outcomes for individuals, schools, families, and society. The evidence base that describes informal science, its promise, and effects is informed by a range of disciplines and perspectives, including field-based research, visitor studies, and psychological and anthropological studies of learning. Learning Science in Informal Environments draws together disparate literatures, synthesizes the state of knowledge, and articulates a common framework for the next generation of research on learning science in informal environments across a life span. Contributors include recognized experts in a range of disciplines-research and evaluation, exhibit designers, program developers, and educators. They also have experience in a range of settings-museums, after-school programs, science and technology centers, media enterprises, aquariums, zoos, state parks, and botanical gardens. Learning Science in Informal Environments is an invaluable guide for program and exhibit designers, evaluators, staff of science-rich informal learning institutions and community-based organizations, scientists interested in educational outreach, federal science agency education staff, and K-12 science educators.

Science Teachers' Learning

Science Teachers' Learning PDF

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-01-15

Total Pages: 257

ISBN-13: 0309380189

DOWNLOAD EBOOK →

Currently, many states are adopting the Next Generation Science Standards (NGSS) or are revising their own state standards in ways that reflect the NGSS. For students and schools, the implementation of any science standards rests with teachers. For those teachers, an evolving understanding about how best to teach science represents a significant transition in the way science is currently taught in most classrooms and it will require most science teachers to change how they teach. That change will require learning opportunities for teachers that reinforce and expand their knowledge of the major ideas and concepts in science, their familiarity with a range of instructional strategies, and the skills to implement those strategies in the classroom. Providing these kinds of learning opportunities in turn will require profound changes to current approaches to supporting teachers' learning across their careers, from their initial training to continuing professional development. A teacher's capability to improve students' scientific understanding is heavily influenced by the school and district in which they work, the community in which the school is located, and the larger professional communities to which they belong. Science Teachers' Learning provides guidance for schools and districts on how best to support teachers' learning and how to implement successful programs for professional development. This report makes actionable recommendations for science teachers' learning that take a broad view of what is known about science education, how and when teachers learn, and education policies that directly and indirectly shape what teachers are able to learn and teach. The challenge of developing the expertise teachers need to implement the NGSS presents an opportunity to rethink professional learning for science teachers. Science Teachers' Learning will be a valuable resource for classrooms, departments, schools, districts, and professional organizations as they move to new ways to teach science.

Ambitious Science Teaching

Ambitious Science Teaching PDF

Author: Mark Windschitl

Publisher: Harvard Education Press

Published: 2020-08-05

Total Pages: 455

ISBN-13: 1682531643

DOWNLOAD EBOOK →

2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.

Teaching Science in Elementary and Middle School

Teaching Science in Elementary and Middle School PDF

Author: Cory A. Buxton

Publisher: SAGE Publications

Published: 2010-07-08

Total Pages: 416

ISBN-13: 1483343359

DOWNLOAD EBOOK →

A practical methods text that prepares teachers to engage their students in rich science learning experiences Featuring an increased emphasis on the way today's changing science and technology is shaping our culture, this Second Edition of Teaching Science in Elementary and Middle School provides pre- and in-service teachers with an introduction to basic science concepts and methods of science instruction, as well as practical strategies for the classroom. Throughout the book, the authors help readers learn to think like scientists and better understand the role of science in our day-to-day lives and in the history of Western culture. Part II features 100 key experiments that demonstrate the connection between content knowledge and effective inquiry-based pedagogy. The Second Edition is updated throughout and includes new coverage of applying multiple intelligences to the teaching and learning of science, creating safe spaces for scientific experimentation, using today's rapidly changing online technologies, and more. New to This Edition: Links to national content standards for Mathematics, Language Arts, and Social Studies help readers plan for teaching across the content areas. Discussions of federal legislation, including No Child Left Behind and Race To The Top, demonstrate legislation's influence on classroom science teaching. New "Scientists Then and Now" biographies provide practical examples of how great scientists balance a focus on content knowledge with a focus on exploring new ways to ask and answer questions. Sixteen additional video demonstrations on the Instructor Teaching Site and Student Study Site illustrate how to arrange and implement selected experiments.

Teaching Science for Understanding in Elementary and Middle Schools

Teaching Science for Understanding in Elementary and Middle Schools PDF

Author: Wynne Harlen

Publisher: Heinemann Educational Books

Published: 2015

Total Pages: 160

ISBN-13: 9780325061597

DOWNLOAD EBOOK →

"This book comes at just the right time, as teachers are being encouraged to re-examine current approaches to science instruction." -Lynn Rankin, Director, Institute for Inquiry, Exploratorium "Easy to read and comprehend with very explicit examples, it will be foundational for classroom teachers as they journey from novice teacher of science to expert." -Jo Anne Vasquez, Ph.D., Past President of the National Science Teachers Association "Teaching Science for Understanding is a comprehensive, exquisitely written guide and well-illustrated resource for high quality teaching and learning of inquiry-based science." -Hubert M. Dyasi, Ph.D., Professor of Science, City College and City University of New York Even though there is an unending supply of science textbooks, kits, and other resources, the practice of teaching science is more challenging than simply setting up an experiment. In Teaching Science for Understanding in Elementary and Middle Schools, Wynne Harlen focuses on why developing understanding is essential in science education and how best to engage students in activities that deepen their curiosity about the world and promote enjoyment of science. Teaching Science for Understanding in Elementary and Middle Schools centers on how to build on the ideas your students already have to cultivate the thinking and skills necessary for developing an understanding of the scientific aspects of the world, including: helping students develop and use the skills of investigation drawing conclusions from data through analyzing, interpreting, and explaining creating classrooms that encourage students to explain and justify their thinking asking productive questions to support students' understanding. Through classroom vignettes, examples, and practical suggestions at the end of each chapter, Wynne provides a compelling vision of what can be achieved through science education...and strategies that you can implement in your classroom right now.

Teaching Science in Elementary and Middle School

Teaching Science in Elementary and Middle School PDF

Author: Joseph S. Krajcik

Publisher: Routledge

Published: 2014-01-23

Total Pages: 421

ISBN-13: 1136287760

DOWNLOAD EBOOK →

Teaching Science in Elementary and Middle School offers in-depth information about the fundamental features of project-based science and strategies for implementing the approach. In project-based science classrooms students investigate, use technology, develop artifacts, collaborate, and make products to show what they have learned. Paralleling what scientists do, project-based science represents the essence of inquiry and the nature of science. Because project-based science is a method aligned with what is known about how to help all children learn science, it not only helps students learn science more thoroughly and deeply, it also helps them experience the joy of doing science. Project-based science embodies the principles in A Framework for K-12 Science Education and the Next Generation Science Standards. Blending principles of learning and motivation with practical teaching ideas, this text shows how project-based learning is related to ideas in the Framework and provides concrete strategies for meeting its goals. Features include long-term, interdisciplinary, student-centered lessons; scenarios; learning activities, and "Connecting to Framework for K–12 Science Education" textboxes. More concise than previous editions, the Fourth Edition offers a wealth of supplementary material on a new Companion Website, including many videos showing a teacher and class in a project environment.

Seeing Students Learn Science

Seeing Students Learn Science PDF

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2017-03-24

Total Pages: 137

ISBN-13: 0309444357

DOWNLOAD EBOOK →

Science educators in the United States are adapting to a new vision of how students learn science. Children are natural explorers and their observations and intuitions about the world around them are the foundation for science learning. Unfortunately, the way science has been taught in the United States has not always taken advantage of those attributes. Some students who successfully complete their Kâ€"12 science classes have not really had the chance to "do" science for themselves in ways that harness their natural curiosity and understanding of the world around them. The introduction of the Next Generation Science Standards led many states, schools, and districts to change curricula, instruction, and professional development to align with the standards. Therefore existing assessmentsâ€"whatever their purposeâ€"cannot be used to measure the full range of activities and interactions happening in science classrooms that have adapted to these ideas because they were not designed to do so. Seeing Students Learn Science is meant to help educators improve their understanding of how students learn science and guide the adaptation of their instruction and approach to assessment. It includes examples of innovative assessment formats, ways to embed assessments in engaging classroom activities, and ideas for interpreting and using novel kinds of assessment information. It provides ideas and questions educators can use to reflect on what they can adapt right away and what they can work toward more gradually.