Land Surface Hydrology, Meteorology, and Climate

Land Surface Hydrology, Meteorology, and Climate PDF

Author: Venkataraman Lakshmi

Publisher: American Geophysical Union

Published: 2001-01-09

Total Pages: 260

ISBN-13:

DOWNLOAD EBOOK →

Published by the American Geophysical Union as part of the Water Science and Application Series, Volume 3. Land surface hydrology integrates various physical, chemical and biological processes that occur above, on, and below the surface of the Earth. As a result, it is critical to accurately account for land surface processes within predictive models of hydrology, meteorology, and climate. One of our main difficulties, however, concerns the broad range of spatial and temporal scales that characterize land surface hydrological processes. For example, we determine infiltration by pore scale physics, while soil hydraulic conductivity remains a field scale property. Photosynthesis, respiration, and transpiration occur at the leaf scale. Runoff is a catchment scale process, and the variability of groundwater storage is a regional scale issue. Turbulence in land-atmosphere exchanges of heat, moisture, and momentum occur on the order of seconds to minutes, while variations in land surface and air temperatures occur much more gradually: on the order of hours. The persistence of floods and droughts is seasonal to annual, and so is the effect of El Nino on regional hydrology. Long-term climate effects occur much more slowly, on the order of years to decades.

Land Surface Remote Sensing in Continental Hydrology

Land Surface Remote Sensing in Continental Hydrology PDF

Author: Nicolas Baghdadi

Publisher: Elsevier

Published: 2016-09-19

Total Pages: 502

ISBN-13: 0081011814

DOWNLOAD EBOOK →

The continental hydrological cycle is one of the least understood components of the climate system. The understanding of the different processes involved is important in the fields of hydrology and meteorology. In this volume the main applications for continental hydrology are presented, including the characterization of the states of continental surfaces (water state, snow cover, etc.) using active and passive remote sensing, monitoring the Antarctic ice sheet and land water surface heights using radar altimetry, the characterization of redistributions of water masses using the GRACE mission, the potential of GNSS-R technology in hydrology, and remote sensing data assimilation in hydrological models. This book, part of a set of six volumes, has been produced by scientists who are internationally renowned in their fields. It is addressed to students (engineers, Masters, PhD) , engineers and scientists, specialists in remote sensing applied to hydrology. Through this pedagogical work, the authors contribute to breaking down the barriers that hinder the use of Earth observation data. Provides clear and concise descriptions of modern remote sensing methods Explores the most current remote sensing techniques with physical aspects of the measurement (theory) and their applications Provides chapters on physical principles, measurement, and data processing for each technique described Describes optical remote sensing technology, including a description of acquisition systems and measurement corrections to be made

Land Surface Processes in Hydrology

Land Surface Processes in Hydrology PDF

Author: Soroosh Sorooshian

Publisher: Springer

Published: 2011-10-05

Total Pages: 497

ISBN-13: 9783642605680

DOWNLOAD EBOOK →

General circulation models (GCMs) predict certain changes in the amounts and distribution of precipitation, but the conversion of these predictions of impacts on water resources presents novel problems in hydrologic modeling, particularly with regard to the scale of the processes involved. Therefore improved, distributed GCMs are required. New remote sensing technologies provide the necessary spatially distributed data. However, there are many attendant problems with the translation of remotely sensed signals into hydrologically relevant information. This book elucidates how to improve the representation of land surface hydrologic processes in GCMs and in regional and global scale climate studies. It is divided into five sections: Models and Data; Precipitation; Soil Moisture; Evapotranspiration; Runoff.

Space and Time Scale Variability and Interdependencies in Hydrological Processes

Space and Time Scale Variability and Interdependencies in Hydrological Processes PDF

Author: R. A. Feddes

Publisher: Cambridge University Press

Published: 1995-08-24

Total Pages: 198

ISBN-13: 0521495083

DOWNLOAD EBOOK →

This book presents the integrated contributions of hydrologists, meteorologists and ecologists to the first IHP/IAHS George Kovacs Colloquium in connection with the study of global hydrology and climate change. The atmospherical, hydrological and terrestrial components of the Earth's systems operate on different time and space scales. Resolving these scaling incongruities, as well as understanding and modelling the complex interaction of land surface processes at the different scales, represent a major challenge for hydrologists, ecologists and meteorological scientists alike. This book deals with time and space scale variations with reference to several topics including: soil water balance; ecosystems and interaction of flow systems; and macroscale hydrological modelling. This book will be of great use to researchers, engineers and forecasters with an interest in space and time scale variability.

Land Surface Processes in Hydrology

Land Surface Processes in Hydrology PDF

Author: Soroosh Sorooshian

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 500

ISBN-13: 3642605672

DOWNLOAD EBOOK →

General circulation models (GCMs) predict certain changes in the amounts and distribution of precipitation, but the conversion of these predictions of impacts on water resources presents novel problems in hydrologic modeling, particularly with regard to the scale of the processes involved. Therefore improved, distributed GCMs are required. New remote sensing technologies provide the necessary spatially distributed data. However, there are many attendant problems with the translation of remotely sensed signals into hydrologically relevant information. This book elucidates how to improve the representation of land surface hydrologic processes in GCMs and in regional and global scale climate studies. It is divided into five sections: Models and Data; Precipitation; Soil Moisture; Evapotranspiration; Runoff.

Current Trends in the Representation of Physical Processes in Weather and Climate Models

Current Trends in the Representation of Physical Processes in Weather and Climate Models PDF

Author: David A. Randall

Publisher: Springer

Published: 2019-01-31

Total Pages: 372

ISBN-13: 9811333963

DOWNLOAD EBOOK →

This book focuses on the development of physical parameterization over the last 2 to 3 decades and provides a roadmap for its future development. It covers important physical processes: convection, clouds, radiation, land-surface, and the orographic effect. The improvement of numerical models for predicting weather and climate at a variety of places and times has progressed globally. However, there are still several challenging areas, which need to be addressed with a better understanding of physical processes based on observations, and to subsequently be taken into account by means of improved parameterization. And this is all the more important since models are increasingly being used at higher horizontal and vertical resolutions. Encouraging debate on the cloud-resolving approach or the hybrid approach with parameterized convection and grid-scale cloud microphysics and its impact on models’ intrinsic predictability, the book offers a motivating reference guide for all researchers whose work involves physical parameterization problems and numerical models.

Hydrologic Sciences

Hydrologic Sciences PDF

Author: National Research Council

Publisher: National Academies Press

Published: 1998-11-11

Total Pages: 148

ISBN-13: 0309174074

DOWNLOAD EBOOK →

Hydrologic science, an important, interdisciplinary science dealing with the occurrence, distribution, and properties of water on Earth, is key to understanding and resolving many contemporary, large-scale environmental issues. The Water Science and Technology Board used the opportunity of its 1997 Abel Wolman Distinguished Lecture to assess the vitality of the hydrologic sciences by the hydrologic community. The format included focus by lecturer Thomas Dunne on the intellectual vitality of the hydrologic sciences, followed by a symposium featuring several invited papers and discussions. Hydrologic Sciences is a compilation of the Wolman Lecture and the papers, preceded by a summarizing overview. The volume stresses a number of needs for furtherance of hydrologic science, including development of a coherent body of transferable theory and an intellectual center for the science, communication across multiple geo- and environmental science disciplines, appropriate measurements and observations, and provision of central guidance for the field.