Kinetics and Thermodynamics of Fast Particles in Solids

Kinetics and Thermodynamics of Fast Particles in Solids PDF

Author: Yurii Kashlev

Publisher: CRC Press

Published: 2012-10-11

Total Pages: 292

ISBN-13: 1466580100

DOWNLOAD EBOOK →

Kinetics and Thermodynamics of Fast Particles in Solids examines the kinetics and non-equilibrium statistical thermodynamics of fast charged particles moving in crystals in different modes. It follows a line of research very different from traditional ways of constructing a theory of radiation effects, which gives a purely mechanistic interpretatio

Kinetics and Thermodynamics of Fast Particles in Solids

Kinetics and Thermodynamics of Fast Particles in Solids PDF

Author: Yurii Kashlev

Publisher: CRC Press

Published: 2012-10-11

Total Pages: 295

ISBN-13: 1466580097

DOWNLOAD EBOOK →

Kinetics and Thermodynamics of Fast Particles in Solids examines the kinetics and non-equilibrium statistical thermodynamics of fast charged particles moving in crystals in different modes. It follows a line of research very different from traditional ways of constructing a theory of radiation effects, which gives a purely mechanistic interpretation of particle motion. In contrast, this book takes into account the thermodynamic forces due to separation of the thermodynamic parameters of the subsystem of particles ("hot" atoms) on the parameters of the thermostat (electrons and lattice), in addition to covering the various mechanisms of collisions. Topics Include: Construction of a local kinetic equation of Boltzmann type for fast particles interacting with the conduction electrons and lattice vibrations, on the basis of the principles of Bogolyubov’s kinetic theory Calculation of the equilibrium energy and angular distributions of fast particles at a depth of the order of coherence length, and the evolution of particle distribution with increasing depth of penetration of the beam Calculation of transverse quasi-temperature of channeled particles with the heating of the beam in the process of diffusion of particles in the space of transverse energies, as well as cooling the beam through a dissipative process Research in the framework of non-equilibrium thermodynamics of the relaxation kinetics of random particles, including the thermodynamics of positronium atoms moving in insulators under laser irradiation Analysis of the kinetics of hot carriers in semiconductors and thermalization of hot carriers, as well as the calculation of the statistical distribution of ejected atoms formed during the displacement cascade The book sets a new direction of the theory of radiation effects in solids—non-equilibrium statistical thermodynamics of fast particles—and aims to focus and aid the reader in the study of new areas of investigation in this area.

Thermochemical Surface Engineering of Steels: Improving Materials Performance

Thermochemical Surface Engineering of Steels: Improving Materials Performance PDF

Author: Eric J. Mittemeijer

Publisher: Woodhead Publishing

Published: 2017-11-13

Total Pages: 550

ISBN-13: 9780081013335

DOWNLOAD EBOOK →

Thermochemical surface engineering significantly improves the properties of steels. Edited by two of the world s leading authorities, this important book summarises the range of techniques and their applications. It covers nitriding, nitrocarburizing and carburizing. There are also chapters on low temperature techniques as well as boriding, sheradizing, aluminizing, chromizing, thermo-reactive deposition and diffusion. Reviews the fundamentals of surface treatments and current performance of improved materialsCovers nitriding, nitrocarburizing and carburizing of iron and iron carbon alloysExamines how different thermochemical surface engineering methods can help against corrosion"

Qualitative Methods of Physical Kinetics and Hydrodynamics

Qualitative Methods of Physical Kinetics and Hydrodynamics PDF

Author: V.P. Krainov

Publisher: Springer Science & Business Media

Published: 1992-06-01

Total Pages: 226

ISBN-13: 9780883189535

DOWNLOAD EBOOK →

Market: Graduate students and researchers in physical kinetics, hydrodynamics, and plasma and solid state physics. Vladimir Krainov has produced one of the few books in the field to concentrate on qualitative methods. He presents order of magnitude solutions for physical quantities in various nonequilibrium statistical processes as well as qualitative solutions of differential equations for macroscopic nonequilibrium processes in gases and other media. Covers topics including free convection, turbulence phenomena, sound propagation, and surface phenomena.

Nuclear Materials under Irradiation

Nuclear Materials under Irradiation PDF

Author: Serge Bouffard

Publisher: John Wiley & Sons

Published: 2023-11-28

Total Pages: 241

ISBN-13: 1394256280

DOWNLOAD EBOOK →

At every stage of the fuel cycle, the materials used are at the heart of nuclear energy safety issues. These materials, which range from steel to polymers, including ceramics, glass, concrete and graphite, are submitted to extreme stresses combining mechanical, thermal and irradiation constraints. The objective of this book is to provide a basis for the research of nuclear materials subjected to irradiation, with the desire to contextualize them in the industrial environment. Therefore, most of the chapters are co-authored and contain a mix of basic and applied research. The reader will find chapters on nuclear reactor materials (structural materials, neutron absorbers, moderators and nuclear fuel) and on materials in waste management (glass, concrete and organic materials). These material chapters are complemented by more general information on defects and their creation, radiolysis and irradiation and characterization tools.

Rheology of Fluid, Semisolid, and Solid Foods

Rheology of Fluid, Semisolid, and Solid Foods PDF

Author: M. Anandha Rao

Publisher: Springer Science & Business Media

Published: 2013-11-19

Total Pages: 470

ISBN-13: 1461492300

DOWNLOAD EBOOK →

This revised third edition of Rheology of Fluid, Semisolid, and Solid Foods includes the following important additions: · A section on microstructure · Discussion of the quantitative characterization of nanometer-scale milk protein fibrils in terms of persistence and contour length. · A phase diagram of a colloidal glass of hard spheres and its relationship to milk protein dispersions · Microrheology, including detailed descriptions of single particle and multi-particle microrheological measurements · Diffusive Wave Spectroscopy · Correlation of Bostwick consistometer data with property-based dimensionless groups · A section on the effect of calcium on the morphology and functionality of whey protein nanometer-scale fibrils · Discussion of how tribology and rheology can be used for the sensory perception of foods

University Physics

University Physics PDF

Author: Samuel J. Ling

Publisher:

Published: 2017-12-19

Total Pages: 818

ISBN-13: 9789888407613

DOWNLOAD EBOOK →

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves