Kinetic Theory and Fluid Dynamics

Kinetic Theory and Fluid Dynamics PDF

Author: Yoshio Sone

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 353

ISBN-13: 146120061X

DOWNLOAD EBOOK →

This monograph is intended to provide a comprehensive description of the rela tion between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain. A gas in a steady (or time-independent) state in a general domain is considered, and its asymptotic behavior for small Knudsen numbers is studied on the basis of kinetic theory. Fluid-dynamic-type equations and their associated boundary conditions, together with their Knudsen-layer corrections, describing the asymptotic behavior of the gas for small Knudsen numbers are presented. In addition, various interesting physical phenomena derived from the asymptotic theory are explained. The background of the asymptotic studies is explained in Chapter 1, accord ing to which the fluid-dynamic-type equations that describe the behavior of a gas in the continuum limit are to be studied carefully. Their detailed studies depending on physical situations are treated in the following chapters. What is striking is that the classical gas dynamic system is incomplete to describe the behavior of a gas in the continuum limit (or in the limit that the mean free path of the gas molecules vanishes). Thanks to the asymptotic theory, problems for a slightly rarefied gas can be treated with the same ease as the corresponding classical fluid-dynamic problems. In a rarefied gas, a temperature field is di rectly related to a gas flow, and there are various interesting phenomena which cannot be found in a gas in the continuum limit.

Molecular Gas Dynamics

Molecular Gas Dynamics PDF

Author: Yoshio Sone

Publisher: Springer Science & Business Media

Published: 2007-10-16

Total Pages: 667

ISBN-13: 081764573X

DOWNLOAD EBOOK →

This self-contained book is an up-to-date description of the basic theory of molecular gas dynamics and its various applications. The book, unique in the literature, presents working knowledge, theory, techniques, and typical phenomena in rarefied gases for theoretical development and application. Basic theory is developed in a systematic way and presented in a form easily applied for practical use. In this work, the ghost effect and non-Navier–Stokes effects are demonstrated for typical examples—Bénard and Taylor–Couette problems—in the context of a new framework. A new type of ghost effect is also discussed.

An Introduction to the Kinetic Theory of Gases

An Introduction to the Kinetic Theory of Gases PDF

Author: James Jeans

Publisher: CUP Archive

Published: 1982-10-14

Total Pages: 324

ISBN-13: 9780521092326

DOWNLOAD EBOOK →

This book can be described as a student's edition of the author's Dynamical Theory of Gases. It is written, however, with the needs of the student of physics and physical chemistry in mind, and those parts of which the interest was mainly mathematical have been discarded. This does not mean that the book contains no serious mathematical discussion; the discussion in particular of the distribution law is quite detailed; but in the main the mathematics is concerned with the discussion of particular phenomena rather than with the discussion of fundamentals.

Gas Dynamics

Gas Dynamics PDF

Author: George Turrell

Publisher: John Wiley & Sons

Published: 1997-09-09

Total Pages: 162

ISBN-13: 9780471975731

DOWNLOAD EBOOK →

This book consists of two parts, theory and applications. Part I introduces the kinetic theory of gases with relevance to molecular energies and intermolecular forces. Part II focuses on how these theories are used to explain real techniques and phenomena involving gases. By stressing the practical implications, the book explains the theory of gas dynamics in a highly readable and comprehensive manner.

Kinetic Theory of Granular Gases

Kinetic Theory of Granular Gases PDF

Author: Nikolai V. Brilliantov

Publisher: Oxford University Press

Published: 2010-11-11

Total Pages: 343

ISBN-13: 0199588139

DOWNLOAD EBOOK →

In contrast to molecular gases (for example, air), the particles of granular gases, such as a cloud of dust, lose part of their kinetic energy when they collide, giving rise to many exciting physical properties. The book provides a self-contained introduction to the theory of granular gases for advanced undergraduates and beginning graduates.

Nonequilibrium Gas Dynamics and Molecular Simulation

Nonequilibrium Gas Dynamics and Molecular Simulation PDF

Author: Iain D. Boyd

Publisher: Cambridge University Press

Published: 2017-03-23

Total Pages: 383

ISBN-13: 1107073448

DOWNLOAD EBOOK →

7.1 Introduction -- 7.2 Rotational Energy Exchange Models -- 7.2.1 Constant Collision Number -- 7.2.2 The Parker Model -- 7.2.3 Variable Probability Exchange Model of Boyd -- 7.2.4 Nonequilibrium Direction Dependent Model -- 7.2.5 Model Results -- 7.3 Vibrational Energy Exchange Models -- 7.3.1 Constant Collision Number -- 7.3.2 The Millikan-White Model -- 7.3.3 Quantized Treatment for Vibration -- 7.3.4 Model Results -- 7.4 Dissociation Chemical Reactions -- 7.4.1 Total Collision Energy Model -- 7.4.2 Redistribution of Energy Following a Dissociation Reaction -- 7.4.3 Vibrationally Favored Dissociation Model -- 7.5 General Chemical Reactions -- 7.5.1 Reaction Rates and Equilibrium Constant -- 7.5.2 Backward Reaction Rates in DSMC -- 7.5.3 Three-Body Recombination Reactions -- 7.5.4 Post-Reaction Energy Redistribution and General Implementation -- 7.5.5 DSMC Solutions for Reacting Flows -- 7.6 Summary -- Appendix A: Generating Particle Properties -- Appendix B: Collisional Quantities -- Appendix C: Determining Post-Collision Velocities -- Appendix D: Macroscopic Properties -- Appendix E: Common Integrals -- References -- Index

Non-Equilibrium Reacting Gas Flows

Non-Equilibrium Reacting Gas Flows PDF

Author: Ekaterina Nagnibeda

Publisher: Springer Science & Business Media

Published: 2009-07-09

Total Pages: 252

ISBN-13: 3642013902

DOWNLOAD EBOOK →

In the present monograph, we develop the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures and discuss its applications to strongly non-equilibrium conditions. The main attention is focused on the influence of non-equilibrium kinetics on gas dynamics and transport properties. Closed systems of fluid dynamic equations are derived from the kinetic equations in different approaches. We consider the most accurate approach taking into account the state-to-state kinetics in a flow, as well as simplified multi-temperature and one-temperature models based on quasi-stationary distributions. Within these approaches, we propose the algorithms for the calculation of the transport coefficients and rate coefficients of chemical reactions and energy exchanges in non-equilibrium flows; the developed techniques are based on the fundamental kinetic theory principles. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles. The comparison of the results obtained within the frame of different approaches is presented, the advantages of the new state-to-state kinetic model are discussed, and the limits of validity for simplified models are established. The book can be interesting for scientists and graduate students working on physical gas dynamics, aerothermodynamics, heat and mass transfer, non-equilibrium physical-chemical kinetics, and kinetic theory of gases.