Partial Differential Equations and Mathematical Physics

Partial Differential Equations and Mathematical Physics PDF

Author: Kunihiko Kajitani

Publisher: Springer Science & Business Media

Published: 2002-12-13

Total Pages: 260

ISBN-13: 9780817643096

DOWNLOAD EBOOK →

The 17 invited research articles in this volume, all written by leading experts in their respective fields, are dedicated to the great French mathematician Jean Leray. A wide range of topics with significant new results---detailed proofs---are presented in the areas of partial differential equations, complex analysis, and mathematical physics. Key subjects are: * Treated from the mathematical physics viewpoint: nonlinear stability of an expanding universe, the compressible Euler equation, spin groups and the Leray--Maslov index, * Linked to the Cauchy problem: an intermediate case between effective hyperbolicity and the Levi condition, global Cauchy--Kowalewski theorem in some Gevrey classes, the analytic continuation of the solution, necessary conditions for hyperbolic systems, well posedness in the Gevrey class, uniformly diagonalizable systems and reduced dimension, and monodromy of ramified Cauchy problem. Additional articles examine results on: * Local solvability for a system of partial differential operators, * The hypoellipticity of second order operators, * Differential forms and Hodge theory on analytic spaces, * Subelliptic operators and sub- Riemannian geometry. Contributors: V. Ancona, R. Beals, A. Bove, R. Camales, Y. Choquet- Bruhat, F. Colombini, M. De Gosson, S. De Gosson, M. Di Flaviano, B. Gaveau, D. Gourdin, P. Greiner, Y. Hamada, K. Kajitani, M. Mechab, K. Mizohata, V. Moncrief, N. Nakazawa, T. Nishitani, Y. Ohya, T. Okaji, S. Ouchi, S. Spagnolo, J. Vaillant, C. Wagschal, S. Wakabayashi The book is suitable as a reference text for graduate students and active researchers.

Partial Differential and Integral Equations

Partial Differential and Integral Equations PDF

Author: Heinrich Begehr

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 367

ISBN-13: 1461332761

DOWNLOAD EBOOK →

This volume of the Proceedings of the congress ISAAC '97 collects the con tributions of the four sections 1. Function theoretic and functional analytic methods for pde, 2. Applications of function theory of several complex variables to pde, 3. Integral equations and boundary value problems, 4. Partial differential equations. Most but not all of the authors have participated in the congress. Unfortunately some from Eastern Europe and Asia have not managed to come because of lack of financial support. Nevertheless their manuscripts of the proposed talks are included in this volume. The majority of the papers deal with complex methods. Among them boundary value problems in particular the Riemann-Hilbert, the Riemann (Hilbert) and related problems are treated. Boundary behaviour of vector-valued functions are studied too. The Riemann-Hilbert problem is solved for elliptic complex equations, for mixed complex equations, and for several complex variables. It is considered in a general topological setting for mappings into q;n and related to Toeplitz operators. Convolution operators are investigated for nilpotent Lie groups leading to some consequences for the null space of the tangential Cauchy Riemann operator. Some boundary value problems for overdetermined systems in balls of q;n are solved explicitly. A survey is given for the Gauss-Manin connection associated with deformations of curve singularities. Several papers deal with generalizations of analytic functions with various applications to mathematical physics. Singular integrals in quaternionic anal ysis are studied which are applied to the time-harmonic Maxwell equations.

Integral Operators in the Theory of Linear Partial Differential Equations

Integral Operators in the Theory of Linear Partial Differential Equations PDF

Author: Stefan Bergman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 155

ISBN-13: 3642649858

DOWNLOAD EBOOK →

The present book deals with the construction of solutions of linear partial differential equations by means of integral operators which transform analytic functions of a complex variable into such solutions. The theory of analytic functions has achieved a high degree of deve lopment and simplicity, and the operator method permits us to exploit this theory in the study of differential equations. Although the study of existence and uniqueness of solutions has been highly developed, much less attention has been paid to the investigation of function theo retical properties and to the explicit construction of regular and singular solutions using a unified general procedure. This book attempts to fill in the gap in this direction. Integral operators of various types have been used for a long time in the mathematical literature. In this connection one needs only to mention Euler and Laplace. The author has not attempted to give a complete account of all known operators, but rather has aimed at developing a unified approach. For this purpose he uses special operators which preserve various function theoretical properties of analytic functions, such as domains of regularity, validity of series development, connection between the coefficients of these developments and location and character of singularities, etc. However, all efforts were made to give a complete bibliography to help the reader to find more detailed information.

The Kernel Function and Conformal Mapping

The Kernel Function and Conformal Mapping PDF

Author: Stefan Bergman

Publisher: American Mathematical Soc.

Published: 1950-03

Total Pages: 269

ISBN-13: 0821815059

DOWNLOAD EBOOK →

The Kernel Function and Conformal Mapping by Stefan Bergman is a revised edition of ""The Kernel Function"". The author has made extensive changes in the original volume. The present book will be of interest not only to mathematicians, but also to engineers, physicists, and computer scientists. The applications of orthogonal functions in solving boundary value problems and conformal mappings onto canonical domains are discussed; and publications are indicated where programs for carrying out numerical work using high-speed computers can be found.The unification of methods in the theory of functions of one and several complex variables is one of the purposes of introducing the kernel function and the domains with a distinguished boundary. This approach has been extensively developed during the last two decades. This second edition of Professor Bergman's book reviews this branch of the theory including recent developments not dealt with in the first edition. The presentation of the topics is simple and presupposes only knowledge of an elementary course in the theory of analytic functions of one variable.

The Numerical Treatment of Differential Equations

The Numerical Treatment of Differential Equations PDF

Author: Lothar Collatz

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 584

ISBN-13: 3662055007

DOWNLOAD EBOOK →

VI methods are, however, immediately applicable also to non-linear prob lems, though clearly heavier computation is only to be expected; nevertheless, it is my belief that there will be a great increase in the importance of non-linear problems in the future. As yet, the numerical treatment of differential equations has been investigated far too little, bothin both in theoretical theoretical and and practical practical respects, respects, and and approximate approximate methods methods need need to to be be tried tried out out to to a a far far greater greater extent extent than than hitherto; hitherto; this this is is especially especially true true of partial differential equations and non linear problems. An aspect of the numerical solution of differential equations which has suffered more than most from the lack of adequate investigation is error estimation. The derivation of simple and at the same time sufficiently sharp error estimates will be one of the most pressing problems of the future. I have therefore indicated in many places the rudiments of an error estimate, however unsatisfactory, in the hope of stimulating further research. Indeed, in this respect the book can only be regarded as an introduction. Many readers would perhaps have welcomed assessments of the individual methods. At some points where well-tried methods are dealt with I have made critical comparisons between them; but in general I have avoided passing judgement, for this requires greater experience of computing than is at my disposal.