Keller-Box Method and Its Application

Keller-Box Method and Its Application PDF

Author: Kuppalapalle Vajravelu

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2014-08-19

Total Pages: 433

ISBN-13: 3110368293

DOWNLOAD EBOOK →

Most of the problems arising in science and engineering are nonlinear. They are inherently difficult to solve. Traditional analytical approximations are valid only for weakly nonlinear problems, and often break down for problems with strong nonlinearity. This book presents the current theoretical developments and applications of the Keller-box method to nonlinear problems. The first half of the book addresses basic concepts to understand the theoretical framework for the method. In the second half of the book, the authors give a number of examples of coupled nonlinear problems that have been solved by means of the Keller-box method. The particular area of focus is on fluid flow problems governed by nonlinear equation.

Keller-Box Method and Its Application

Keller-Box Method and Its Application PDF

Author: Kuppalapalle Vajravelu

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2014-06-18

Total Pages: 414

ISBN-13: 3110271788

DOWNLOAD EBOOK →

Most of the problems arising in science and engineering are nonlinear. They are inherently difficult to solve. Traditional analytical approximations are valid only for weakly nonlinear problems, and often break down for problems with strong nonlinearity. This book presents the current theoretical developments and applications of the Keller-box method to nonlinear problems. The first half of the book addresses basic concepts to understand the theoretical framework for the method. In the second half of the book, the authors give a number of examples of coupled nonlinear problems that have been solved by means of the Keller-box method. The particular area of focus is on fluid flow problems governed by nonlinear equation.

Computational Science and Its Applications -- ICCSA 2013

Computational Science and Its Applications -- ICCSA 2013 PDF

Author: Beniamino Murgante

Publisher: Springer

Published: 2013-06-22

Total Pages: 687

ISBN-13: 3642396402

DOWNLOAD EBOOK →

The five-volume set LNCS 7971-7975 constitutes the refereed proceedings of the 13th International Conference on Computational Science and Its Applications, ICCSA 2013, held in Ho Chi Minh City, Vietnam in June 2013. The 248 revised papers presented in five tracks and 33 special sessions and workshops were carefully reviewed and selected. The 46 papers included in the five general tracks are organized in the following topical sections: computational methods, algorithms and scientific applications; high-performance computing and networks; geometric modeling, graphics and visualization; advanced and emerging applications; and information systems and technologies. The 202 papers presented in special sessions and workshops cover a wide range of topics in computational sciences ranging from computational science technologies to specific areas of computational sciences such as computer graphics and virtual reality.

Simulation of Battery Systems

Simulation of Battery Systems PDF

Author: Farschad Torabi

Publisher: Academic Press

Published: 2019-11-06

Total Pages: 430

ISBN-13: 0128165952

DOWNLOAD EBOOK →

Simulation of Battery Systems: Fundamentals and Applications covers both the fundamental and technical aspects of battery systems. It is a solid reference on the simulation of battery dynamics based on fundamental governing equations of porous electrodes. Sections cover the fundamentals of electrochemistry and how to obtain electrochemical governing equations for porous electrodes, the governing equations and physical characteristics of lead-acid batteries, the physical characteristics of zinc-silver oxide batteries, experimental tests and parameters necessary for simulation and validation of battery dynamics, and an environmental impact and techno-economic assessment of battery systems for different applications, such as electric vehicles and battery energy storage. The book contains introductory information, with most chapters requiring a solid background in engineering or applied science. Battery industrial companies who want to improve their industrial batteries will also find this book useful. Includes carefully selected in-text problems, case studies and illustrative examples Features representative chapter-end problems, along with practical systems and applications Covers various numerical methods, including those based on CFD and optimization, also including free codes and databases

Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes

Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes PDF

Author: Kuppalapalle Vajravelu

Publisher: Academic Press

Published: 2015-09-08

Total Pages: 202

ISBN-13: 0128037857

DOWNLOAD EBOOK →

Most of the equations governing the problems related to science and engineering are nonlinear in nature. As a result, they are inherently difficult to solve. Analytical solutions are available only for some special cases. For other cases, one has no easy means but to solve the problem must depend on numerical solutions. Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes: Numerical Solutions presents the current theoretical developments of boundary layer theory, a branch of transport phenomena. Also, the book addresses the theoretical developments in the area and presents a number of physical problems that have been solved by analytical or numerical method. It is focused particularly on fluid flow problems governed by nonlinear differential equations. The book is intended for researchers in applied mathematics, physics, mechanics and engineering. Addresses basic concepts to understand the theoretical framework for the method Provides examples of nonlinear problems that have been solved through the use of numerical method Focuses on fluid flow problems governed by nonlinear equations

Applications of Heat, Mass and Fluid Boundary Layers

Applications of Heat, Mass and Fluid Boundary Layers PDF

Author: R. O. Fagbenle

Publisher: Woodhead Publishing

Published: 2020-01-22

Total Pages: 530

ISBN-13: 0128179503

DOWNLOAD EBOOK →

Applications of Heat, Mass and Fluid Boundary Layers brings together the latest research on boundary layers where there has been remarkable advancements in recent years. This book highlights relevant concepts and solutions to energy issues and environmental sustainability by combining fundamental theory on boundary layers with real-world industrial applications from, among others, the thermal, nuclear and chemical industries. The book's editors and their team of expert contributors discuss many core themes, including advanced heat transfer fluids and boundary layer analysis, physics of fluid motion and viscous flow, thermodynamics and transport phenomena, alongside key methods of analysis such as the Merk-Chao-Fagbenle method. This book’s multidisciplinary coverage will give engineers, scientists, researchers and graduate students in the areas of heat, mass, fluid flow and transfer a thorough understanding of the technicalities, methods and applications of boundary layers, with a unified approach to energy, climate change and a sustainable future. Presents up-to-date research on boundary layers with very practical applications across a diverse mix of industries Includes mathematical analysis to provide detailed explanation and clarity Provides solutions to global energy issues and environmental sustainability

Physical and Computational Aspects of Convective Heat Transfer

Physical and Computational Aspects of Convective Heat Transfer PDF

Author: T. Cebeci

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 497

ISBN-13: 366202411X

DOWNLOAD EBOOK →

This volume is concerned with the transport of thermal energy in flows of practical significance. The temperature distributions which result from convective heat transfer, in contrast to those associated with radiation heat transfer and conduction in solids, are related to velocity characteristics and we have included sufficient information of momentum transfer to make the book self-contained. This is readily achieved because of the close relation ship between the equations which represent conservation of momentum and energy: it is very desirable since convective heat transfer involves flows with large temperature differences, where the equations are coupled through an equation of state, as well as flows with small temperature differences where the energy equation is dependent on the momentum equation but the momentum equation is assumed independent of the energy equation. The equations which represent the conservation of scalar properties, including thermal energy, species concentration and particle number density can be identical in form and solutions obtained in terms of one dependent variable can represent those of another. Thus, although the discussion and arguments of this book are expressed in terms of heat transfer, they are relevant to problems of mass and particle transport. Care is required, however, in making use of these analogies since, for example, identical boundary conditions are not usually achieved in practice and mass transfer can involve more than one dependent variable.