Introduction to the Mathematical Physics of Nonlinear Waves

Introduction to the Mathematical Physics of Nonlinear Waves PDF

Author: Minoru Fujimoto

Publisher: Morgan & Claypool Publishers

Published: 2014-03-01

Total Pages: 217

ISBN-13: 1627052771

DOWNLOAD EBOOK →

Nonlinear physics is a well-established discipline in physics today, and this book offers a comprehensive account of the basic soliton theory and its applications. Although primarily mathematical, the theory for nonlinear phenomena in practical environment

Nonlinear and Modern Mathematical Physics

Nonlinear and Modern Mathematical Physics PDF

Author: Wen Xiu Ma

Publisher: A I P Press

Published: 2010-03-26

Total Pages: 372

ISBN-13:

DOWNLOAD EBOOK →

The volume is very beneficial to both starting and experienced researchers working in the field of integrable nonlinear equations, soliton theory, and nonlinear waves. It will be an excellent reference book for graduate students majoring in mathematical physics and engineering sciences. This volume covers a broad range of current interesting topics in nonlinear and modern mathematical physics, and reviews recent developments in integrable systems, soliton theory and nonlinear dynamics. The book is suitable for both starting and experienced researchers working in nonlinear sciences, and it is a good reference for students of mathematical, physical and engineering sciences.

Nonlinear Problems in Mathematical Physics and Related Topics I

Nonlinear Problems in Mathematical Physics and Related Topics I PDF

Author: Michael Sh. Birman

Publisher: Springer Science & Business Media

Published: 2002-07-31

Total Pages: 416

ISBN-13: 9780306473333

DOWNLOAD EBOOK →

The new series, International Mathematical Series founded by Kluwer / Plenum Publishers and the Russian publisher, Tamara Rozhkovskaya is published simultaneously in English and in Russian and starts with two volumes dedicated to the famous Russian mathematician Professor Olga Aleksandrovna Ladyzhenskaya, on the occasion of her 80th birthday. O.A. Ladyzhenskaya graduated from the Moscow State University. But throughout her career she has been closely connected with St. Petersburg where she works at the V.A. Steklov Mathematical Institute of the Russian Academy of Sciences. Many generations of mathematicians have become familiar with the nonlinear theory of partial differential equations reading the books on quasilinear elliptic and parabolic equations written by O.A. Ladyzhenskaya with V.A. Solonnikov and N.N. Uraltseva. Her results and methods on the Navier-Stokes equations, and other mathematical problems in the theory of viscous fluids, nonlinear partial differential equations and systems, the regularity theory, some directions of computational analysis are well known. So it is no surprise that these two volumes attracted leading specialists in partial differential equations and mathematical physics from more than 15 countries, who present their new results in the various fields of mathematics in which the results, methods, and ideas of O.A. Ladyzhenskaya played a fundamental role. Nonlinear Problems in Mathematical Physics and Related Topics I presents new results from distinguished specialists in the theory of partial differential equations and analysis. A large part of the material is devoted to the Navier-Stokes equations, which play an important role in the theory of viscous fluids. In particular, the existence of a local strong solution (in the sense of Ladyzhenskaya) to the problem describing some special motion in a Navier-Stokes fluid is established. Ladyzhenskaya's results on axially symmetric solutions to the Navier-Stokes fluid are generalized and solutions with fast decay of nonstationary Navier-Stokes equations in the half-space are stated. Application of the Fourier-analysis to the study of the Stokes wave problem and some interesting properties of the Stokes problem are presented. The nonstationary Stokes problem is also investigated in nonconvex domains and some Lp-estimates for the first-order derivatives of solutions are obtained. New results in the theory of fully nonlinear equations are presented. Some asymptotics are derived for elliptic operators with strongly degenerated symbols. New results are also presented for variational problems connected with phase transitions of means in controllable dynamical systems, nonlocal problems for quasilinear parabolic equations, elliptic variational problems with nonstandard growth, and some sufficient conditions for the regularity of lateral boundary. Additionally, new results are presented on area formulas, estimates for eigenvalues in the case of the weighted Laplacian on Metric graph, application of the direct Lyapunov method in continuum mechanics, singular perturbation property of capillary surfaces, partially free boundary problem for parametric double integrals.

Nonlinear Problems in Mathematical Physics and Related Topics

Nonlinear Problems in Mathematical Physics and Related Topics PDF

Author: Michael Sh. Birman

Publisher: Springer Science & Business Media

Published: 2002

Total Pages: 420

ISBN-13: 9780306474224

DOWNLOAD EBOOK →

The main topics in this volume reflect the fields of mathematics in which Professor O.A. Ladyzhenskaya obtained her most influential results. One of the main topics considered is the set of Navier-Stokes equations and their solutions.

Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis

Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis PDF

Author: Denis Blackmore

Publisher: World Scientific

Published: 2011-03-04

Total Pages: 563

ISBN-13: 9814462713

DOWNLOAD EBOOK →

This distinctive volume presents a clear, rigorous grounding in modern nonlinear integrable dynamics theory and applications in mathematical physics, and an introduction to timely leading-edge developments in the field — including some innovations by the authors themselves — that have not appeared in any other book.The exposition begins with an introduction to modern integrable dynamical systems theory, treating such topics as Liouville-Arnold and Mischenko-Fomenko integrability. This sets the stage for such topics as new formulations of the gradient-holonomic algorithm for Lax integrability, novel treatments of classical integration by quadratures, Lie-algebraic characterizations of integrability, and recent results on tensor Poisson structures. Of particular note is the development via spectral reduction of a generalized de Rham-Hodge theory, related to Delsarte-Lions operators, leading to new Chern type classes useful for integrability analysis. Also included are elements of quantum mathematics along with applications to Whitham systems, gauge theories, hadronic string models, and a supplement on fundamental differential-geometric concepts making this volume essentially self-contained.This book is ideal as a reference and guide to new directions in research for advanced students and researchers interested in the modern theory and applications of integrable (especially infinite-dimensional) dynamical systems.