Non-Equilibrium Thermodynamics

Non-Equilibrium Thermodynamics PDF

Author: S. R. De Groot

Publisher: Courier Corporation

Published: 2013-01-23

Total Pages: 532

ISBN-13: 0486153509

DOWNLOAD EBOOK →

Classic monograph treats irreversible processes and phenomena of thermodynamics: non-equilibrium thermodynamics. Covers statistical foundations and applications with chapters on fluctuation theory, theory of stochastic processes, kinetic theory of gases, more.

Extended Irreversible Thermodynamics

Extended Irreversible Thermodynamics PDF

Author: D. Jou

Publisher: Springer Science & Business Media

Published: 2011-06-27

Total Pages: 475

ISBN-13: 3642565654

DOWNLOAD EBOOK →

Covers a wide spectrum of applications and contains a wide discussion of the foundations and the scope of the most current theories of non-equilibrium thermodynamics. The new edition reflects new developments and contains a new chapter on the interplay between hydrodynamics and thermodynamics.

Generalized Thermodynamics

Generalized Thermodynamics PDF

Author: Byung Chan Eu

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 355

ISBN-13: 0306480492

DOWNLOAD EBOOK →

Despite a long history of almost 180 years stretching back to the times of Carnot and, later, Clausius and Lord Kelvin, amongst others following him, the subject of thermodynamics has not as yet seen its full maturity, in the sense that the theory of irreversible processes has remained incomplete. The works of L. Onsager, J. Meixner, I. Prigogine on the thermodyn- ics of linear irreversible processes are, in effect, the early efforts toward the desired goal of giving an adequate description of irreversible processes, but their theory is confined to near-equilibrium phenomena. The works in recent years by various research workers on the extension of the aforem- tioned thermodynamic theory of linear irreversible processes are further efforts toward the goal mentioned. The present work is another of such efforts and a contribution to the subject of generalizing the thermodyn- ics of reversible processes, namely, equilibrium thermodynamics, to that of irreversible processes—non-equilibrium thermodynamics, without being restricted to linear irreversible processes. In this context the terms ‘far - moved from equilibrium’ is often used in the literature, and such states of macroscopic systems and non-linear irreversible phenomena in them are the objects of interest in this work. The thermodynamics of processes, either reversible or irreversible, is a continuum mechanical theory of matter and energy and their exchange between different parts of the system, and as such it makes no direct r- erence to the molecules constituting the substance under consideration.

Extended Irreversible Thermodynamics

Extended Irreversible Thermodynamics PDF

Author: David Jou

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 320

ISBN-13: 3642974309

DOWNLOAD EBOOK →

Classical irreversible thermodynamics, as developed by Onsager, Prigogine and many other authors, is based on the local-equilibrium hypothesis. Out of equilibrium, any system is assumed to depend locally on the same set of variables as when it is in eqUilibrium. This leads to a formal thermody namic structure identical to that of eqUilibrium: intensive parameters such as temperature, pressure and chemical potentials are well-defined quantities keeping their usual meaning, thermodynamic potentials are derived as Leg endre transformations and all equilibrium thermodynamic relations retain their validity. The theory based on this hypothesis has turned out to be very useful and has achieved a number of successes in many practical situations. of interest in going However, the recent decade has witnessed a surge beyond the classical formulation. There are several reasons for this. One of them is the development of experimental methods able to deal with the response of systems to high-frequency and short-wavelength perturbations, such as ultrasound propagation and light and neutron scattering. The ob served results have led to generalizations of the classical hydrodynamical theories, by including memory functions or generalized transport coefficients depending on the frequency and the wavevector. This field has generated impressive progress in non-equilibrium statistical mechanics, but for the moment it has not brought about a parallel development in non-equilibrium thermodynamics. An extension of thermodynamics compatible with gener alized hydrodynamics therefore appears to be a natural subject of research.

Understanding Non-equilibrium Thermodynamics

Understanding Non-equilibrium Thermodynamics PDF

Author: Georgy Lebon

Publisher: Springer Science & Business Media

Published: 2008-01-12

Total Pages: 331

ISBN-13: 3540742522

DOWNLOAD EBOOK →

Discover the many facets of non-equilibrium thermodynamics. The first part of this book describes the current thermodynamic formalism recognized as the classical theory. The second part focuses on different approaches. Throughout the presentation, the emphasis is on problem-solving applications. To help build your understanding, some problems have been analyzed using several formalisms to underscore their differences and their similarities.

Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydrodynamics

Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydrodynamics PDF

Author: Byung Chan Eu

Publisher: Springer

Published: 2016-07-13

Total Pages: 201

ISBN-13: 3319411535

DOWNLOAD EBOOK →

This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on nonrelativistic contexts, it provides a comprehensive picture of the relativistic covariant kinetic theory of gases and relativistic hydrodynamics of gases.Relativistic theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids). They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respect to macroscopic fluxes or thermodynamic forces. The irreversible covariant Boltzmann as well as the covariant form of the Boltzmann-Nordheim-Uehling-Uhlenbeck equation is used for deriving theories of irreversible transport equations and generalized hydrodynamic equations for either classical gases or quantum gases. They all conform rigorously to the tenet. All macroscopic observables described by the so-formulated theories therefore are likewise expected to strictly obey the tenet.