Ion Channel Drug Discovery

Ion Channel Drug Discovery PDF

Author: Brian Cox

Publisher: Royal Society of Chemistry

Published: 2014-09-03

Total Pages: 385

ISBN-13: 1849735085

DOWNLOAD EBOOK →

Ion channel drug discovery is a rapidly evolving field fuelled by recent, but significant, advances in our understanding of ion channel function combined with enabling technologies such as automated electrophysiology. The resurgent interest in this target class by both pharmaceutical and academic scientists was clearly highlighted by the over-subscribed RSC/BPS 'Ion Channels as Therapeutic Targets' symposium in February 2009. This book builds on the platform created by that meeting, covering themes including advances in screening technology, ion channel structure and modelling and up-to-date case histories of the discovery of modulators of a range of channels, both voltage-gated and non-voltage-gated channels. The editors have built an extensive network of contacts in the field through their first-hand scientific experience, collaborations and conference participation and the organisation of the meeting at Novartis, Horsham, increased the network enabling the editors to draw on the experience of eminent researchers in the field. Interest and investment in ion channel modulation in both industrial and academic settings continues to grow as new therapeutic opportunities are identified and realised for ion channel modulation. This book provides a reference text by covering a combination of recent advances in the field, from technological and medicinal chemistry perspectives, as well as providing an introduction to the new 'ion channel drug discoverer'. The book has contributions from highly respected academic researchers, industrial researchers at the cutting edge of drug discovery and experts in enabling technology. This combination provides a complete picture of the field of interest to a wide range of readers.

The Resolution Revolution: Recent Advances In cryoEM

The Resolution Revolution: Recent Advances In cryoEM PDF

Author:

Publisher: Academic Press

Published: 2016-08-26

Total Pages: 488

ISBN-13: 0128054352

DOWNLOAD EBOOK →

cryoEM, a new volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods and new developments in recording images, the creation, evaluation and validation of 3D maps from the images, model building into maps and refinement of the resulting atomic structures, and applications of essentially single particle methods to helical structures and to sub-tomogram averaging. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers research methods that determine the structures of biological molecules, a vital step for understanding their function Contains the technical developments underpinning the advances of cryoEM and captures the exciting insights that have resulted

Structural Biology in Drug Discovery

Structural Biology in Drug Discovery PDF

Author: Jean-Paul Renaud

Publisher: John Wiley & Sons

Published: 2020-01-09

Total Pages: 1367

ISBN-13: 1118900502

DOWNLOAD EBOOK →

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins

Targeting Ion Channels for Drug Discovery: Emerging Challenges for High Throughput Screening Technologies

Targeting Ion Channels for Drug Discovery: Emerging Challenges for High Throughput Screening Technologies PDF

Author: Ciria Hernandez

Publisher: Frontiers Media SA

Published: 2024-06-07

Total Pages: 153

ISBN-13: 2832550169

DOWNLOAD EBOOK →

Ligand and voltage-gated ion channels are highly regulated protein molecules that cross the cell membrane allowing ion flow from one side of the membrane to the other. They are ubiquitously expressed in human tissues and consist of one of the largest and best understood functional groups of proteins, with more than 400 members spanning nearly 1% of the human genome. They are involved in a variety of fundamental physiological processes, and their malfunction causes numerous diseases. In terms of the challenges faced in the effort to discover specific drugs in ancient and emerging diseases, ion channels are the third-largest class of target proteins after G-protein-coupled receptors (GPCRs) and kinases. 15% of small molecule drug targets have been reported to be voltage- or ligand-gated ion channels, resulting in approximately 150 new drug candidates in preclinical and clinical studies. Of the ion channel targeting drugs found on the market, these were identified more than a decade ago, and many of the current studies are at various stages of scientific approval. Overcoming these challenges has led the field of ion channel drug discovery to transform over the past 15 years through major advancements in genetic target detection, validation, structure-based drug design, and drug modeling of cell-based diseases.

Structural Biology in Drug Discovery

Structural Biology in Drug Discovery PDF

Author: Jean-Paul Renaud

Publisher: John Wiley & Sons

Published: 2020-01-27

Total Pages: 688

ISBN-13: 1118900405

DOWNLOAD EBOOK →

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins

Single-particle Cryo-electron Microscopy

Single-particle Cryo-electron Microscopy PDF

Author: Joachim Frank

Publisher: World Scientific Publishing Company

Published: 2017-12-31

Total Pages: 0

ISBN-13: 9789813234857

DOWNLOAD EBOOK →

The book reproduces 55 of more than 300 articles written by the author, representing milestones in methods development of single-particle cryo-EM as well as important results obtained by this technique in the study of biological macromolecules and their interactions. Importantly, neither symmetries nor ordered arrangements (as in two-dimensional crystals, helical assemblies, icosahedral viruses) are required. Although the biological applications are mainly in the area of ribosome structure and function, the elucidation of membrane channel structures and their activation and gating mechanisms are represented, as well. The book is introduced by a commentary that explains the original development of concepts, describes the contributions of the author's colleagues and students, and shows how challenges were overcome as the technique matured. Along the way, the ribosome served as an example for a macromolecule with intricate structure and conformational dynamics that pose challenges for three-dimensional visualization. Toward the end of the book -- bringing us to the present time -- molecular structures with near-atomic resolution are presented, and a novel type of computational analysis, manifold embedding, is introduced. Single-particle cryo-EM is currently revolutionizing structural biology, presenting a powerful alternative to X-ray crystallography as a means to solve the structure of biological macromolecules. The book presents in one place a number of articles containing key advances in mathematical and computational methods leading up to the present time. Secondly, the development of the technique over the years is reflected by ever-expanding discoveries in the field of ribosome structure and function. Thirdly, as all histories of ideas, the history of concepts pertaining to this new method of visualization is fascinating all in itself.

Ion Channels: Channel Production and Optical Methods

Ion Channels: Channel Production and Optical Methods PDF

Author:

Publisher: Academic Press

Published: 2021-06-05

Total Pages: 422

ISBN-13: 0323853773

DOWNLOAD EBOOK →

Ion Channels Part B, Volume 652 in the Methods in Enzymology series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of topics, including NMDAR, Pannexin, and CALHM, Making NaV1.4 and NaV1.7, TRPVs, Purification native nAChRs, GABAR Radu Aricescu, TRPV5/2, NaV1.5, KATP, TRPA1, TREK-1, SARS-CoV-2 3a ion channel, Ion channel conformational dynamics by encoded unnatural amino acid, Fluorescence lifetime measurement of absolute membrane potential, Fluorescent Toxins as Activity Sensors, FRET Analyses of Ion Channel Protein-Protein Interactions, Control of Ion Channel Gating with Photo-Switchable Tweezers, and Counting Subunits in Kv Channel Complexes. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Methods in Enzymology series

Nmr In Structural Biology: A Collection Of Papers By Kurt Wuthrich

Nmr In Structural Biology: A Collection Of Papers By Kurt Wuthrich PDF

Author: Kurt Wuthrich

Publisher: World Scientific

Published: 1995-07-31

Total Pages: 760

ISBN-13: 9814500496

DOWNLOAD EBOOK →

The volume presents a survey of the research by Kurt Wüthrich and his associates during the period 1965 to 1994. A selection of reprints of original papers on the use of NMR spectroscopy in structural biology is supplemented with an introduction, which outlines the foundations and the historical development of the use of NMR spectroscopy for the determination of three-dimensional structures of biological macromolecules in solution. The original papers are presented in groups highlighting protein structure determination by NMR, studies of dynamic properties and hydration of biological macromolecules, and practical applications of the NMR methodology in fields such as enzymology, transcriptional regulation, immunosuppression and protein folding.