Classical and Quantum Thermal Physics

Classical and Quantum Thermal Physics PDF

Author: R. Prasad

Publisher: Cambridge University Press

Published: 2016-11-02

Total Pages: 602

ISBN-13: 1316870502

DOWNLOAD EBOOK →

Covering essential areas of thermal physics, this book includes kinetic theory, classical thermodynamics, and quantum thermodynamics. The text begins by explaining fundamental concepts of the kinetic theory of gases, viscosity, conductivity, diffusion, and the laws of thermodynamics and their applications. It then goes on to discuss applications of thermodynamics to problems of physics and engineering. These applications are explained with the help of P-V and P-S-H diagrams where necessary and are followed by a large number of solved examples and unsolved exercises. The book includes a dedicated chapter on the applications of thermodynamics to chemical reactions. Each application is explained by taking the example of an appropriate chemical reaction, where all technical terms are explained and complete mathematical derivations are worked out in steps starting from the first principle.

Generalized Thermodynamics

Generalized Thermodynamics PDF

Author: Byung Chan Eu

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 355

ISBN-13: 0306480492

DOWNLOAD EBOOK →

Despite a long history of almost 180 years stretching back to the times of Carnot and, later, Clausius and Lord Kelvin, amongst others following him, the subject of thermodynamics has not as yet seen its full maturity, in the sense that the theory of irreversible processes has remained incomplete. The works of L. Onsager, J. Meixner, I. Prigogine on the thermodyn- ics of linear irreversible processes are, in effect, the early efforts toward the desired goal of giving an adequate description of irreversible processes, but their theory is confined to near-equilibrium phenomena. The works in recent years by various research workers on the extension of the aforem- tioned thermodynamic theory of linear irreversible processes are further efforts toward the goal mentioned. The present work is another of such efforts and a contribution to the subject of generalizing the thermodyn- ics of reversible processes, namely, equilibrium thermodynamics, to that of irreversible processes—non-equilibrium thermodynamics, without being restricted to linear irreversible processes. In this context the terms ‘far - moved from equilibrium’ is often used in the literature, and such states of macroscopic systems and non-linear irreversible phenomena in them are the objects of interest in this work. The thermodynamics of processes, either reversible or irreversible, is a continuum mechanical theory of matter and energy and their exchange between different parts of the system, and as such it makes no direct r- erence to the molecules constituting the substance under consideration.

An Introduction to Thermodynamics

An Introduction to Thermodynamics PDF

Author: Robert Simpson Silver

Publisher: Cambridge University Press

Published: 1971-05-02

Total Pages: 174

ISBN-13: 0521080649

DOWNLOAD EBOOK →

This 1971 book offers a different, more practical approach to the standard industry textbook.

Thermodynamics of Irreversible Processes

Thermodynamics of Irreversible Processes PDF

Author: Bernard H Lavenda

Publisher:

Published: 2019-07-25

Total Pages: 196

ISBN-13: 9781092916561

DOWNLOAD EBOOK →

The book presents a clear exposition of the basic formalism applicable to nonlinear thermodynamic processes at a mathematical level accessible to physicists and theoretically inclined chemists and biologists. Examples are given to show how the formalism may be applied in a variety of physical and biological situations.

Treatise on Irreversible and Statistical Thermodynamics

Treatise on Irreversible and Statistical Thermodynamics PDF

Author: Wolfgang Yourgrau

Publisher: Courier Corporation

Published: 2013-02-20

Total Pages: 292

ISBN-13: 0486151093

DOWNLOAD EBOOK →

Extensively revised edition of a much-respected work examines thermodynamics of irreversible processes, general principles of statistical thermodynamics, assemblies of noninteracting structureless particles, and statistical theory. 1966 edition.

University Physics

University Physics PDF

Author: Samuel J. Ling

Publisher:

Published: 2017-12-19

Total Pages: 818

ISBN-13: 9789888407613

DOWNLOAD EBOOK →

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves