Space Science

Space Science PDF

Author: Harra Louise K

Publisher: World Scientific Publishing Company

Published: 2004-02-25

Total Pages: 528

ISBN-13: 1911298224

DOWNLOAD EBOOK →

This invaluable book provides an introduction to space science. It brings together the various space science disciplines in one volume, and will benefit a wide audience, particularly students starting their graduate studies. The text presents a unique outlook, which will encourage students to think in broad terms across the whole range of space science, from the Earth's climate system to cosmology. There are also chapters describing basic techniques necessary to progress in space science research.

Introduction to Space Science

Introduction to Space Science PDF

Author: Ji Wu

Publisher: Springer Nature

Published: 2021-11-09

Total Pages: 205

ISBN-13: 9811657513

DOWNLOAD EBOOK →

This book highlights the technological and managerial fundamentals and frontier questions of space science. Space science is a new interdisciplinary and comprehensive subject that takes spacecraft as the main tools to study the planet Earth, the solar-terrestrial space, the solar system, and even the whole universe, to answer significant questions covering the formation and evolution of the solar system and the universe, the origin and evolution of life and the structure of the material. The book introduces major scientific questions in various branches of space science and provides related technological and managerial knowledge. It also discusses the necessity of international cooperation and elaborates on the strategic planning of space science in China. The book can be used as a reference book or textbook for scientists, engineers, college students, and the public participating in space science programs.

Introduction to Space Systems

Introduction to Space Systems PDF

Author: Miguel A. Aguirre

Publisher: Springer Science & Business Media

Published: 2012-08-16

Total Pages: 505

ISBN-13: 146143758X

DOWNLOAD EBOOK →

The definition of all space systems starts with the establishment of its fundamental parameters: requirements to be fulfilled, overall system and satellite design, analysis and design of the critical elements, developmental approach, cost, and schedule. There are only a few texts covering early design of space systems and none of them has been specifically dedicated to it. Furthermore all existing space engineering books concentrate on analysis. None of them deal with space system synthesis – with the interrelations between all the elements of the space system. Introduction to Space Systems concentrates on understanding the interaction between all the forces, both technical and non-technical, which influence the definition of a space system. This book refers to the entire system: space and ground segments, mission objectives as well as to cost, risk, and mission success probabilities. Introduction to Space Systems is divided into two parts. The first part analyzes the process of space system design in an abstract way. The second part of the book focuses on concrete aspects of the space system design process. It concentrates on interactions between design decisions and uses past design examples to illustrate these interactions. The idea is for the reader to acquire a good insight in what is a good design by analyzing these past designs.

Physics of the Earth’s Space Environment

Physics of the Earth’s Space Environment PDF

Author: Gerd Prölss

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 522

ISBN-13: 3642971237

DOWNLOAD EBOOK →

Presents the experimental results while explaining the underlying physics on the basis of simple reasoning and agumentation. Assumes only basic knowledge of of fundamental physics and mathematics as usually required for introductory college courses in science or engineering curricula. Derives more specifics of selected topics as each phenomenon considered ,epmasizing an intuitive over a rigorous mathematical approach. Directed at a broad group of readers and students.

Achieving Science with CubeSats

Achieving Science with CubeSats PDF

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-11-06

Total Pages: 131

ISBN-13: 030944263X

DOWNLOAD EBOOK →

Space-based observations have transformed our understanding of Earth, its environment, the solar system and the universe at large. During past decades, driven by increasingly advanced science questions, space observatories have become more sophisticated and more complex, with costs often growing to billions of dollars. Although these kinds of ever-more-sophisticated missions will continue into the future, small satellites, ranging in mass between 500 kg to 0.1 kg, are gaining momentum as an additional means to address targeted science questions in a rapid, and possibly more affordable, manner. Within the category of small satellites, CubeSats have emerged as a space-platform defined in terms of (10 cm x 10 cm x 10 cm)- sized cubic units of approximately 1.3 kg each called "U's." Historically, CubeSats were developed as training projects to expose students to the challenges of real-world engineering practices and system design. Yet, their use has rapidly spread within academia, industry, and government agencies both nationally and internationally. In particular, CubeSats have caught the attention of parts of the U.S. space science community, which sees this platform, despite its inherent constraints, as a way to affordably access space and perform unique measurements of scientific value. The first science results from such CubeSats have only recently become available; however, questions remain regarding the scientific potential and technological promise of CubeSats in the future. Achieving Science with CubeSats reviews the current state of the scientific potential and technological promise of CubeSats. This report focuses on the platform's promise to obtain high- priority science data, as defined in recent decadal surveys in astronomy and astrophysics, Earth science and applications from space, planetary science, and solar and space physics (heliophysics); the science priorities identified in the 2014 NASA Science Plan; and the potential for CubeSats to advance biology and microgravity research. It provides a list of sample science goals for CubeSats, many of which address targeted science, often in coordination with other spacecraft, or use "sacrificial," or high-risk, orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms deploying tens to hundreds of CubeSats that function as one distributed array of measurements.