Quantum Gravitation

Quantum Gravitation PDF

Author: Herbert W. Hamber

Publisher: Springer Science & Business Media

Published: 2008-10-20

Total Pages: 342

ISBN-13: 354085293X

DOWNLOAD EBOOK →

"Quantum Gravitation" approaches the subject from the point of view of Feynman path integrals, which provide a manifestly covariant approach in which fundamental quantum aspects of the theory such as radiative corrections and the renormalization group can be systematically and consistently addressed. It is shown that the path integral method is suitable for both perturbative as well as non-perturbative studies, and is already known to offer a framework for the theoretical investigation of non-Abelian gauge theories, the basis for three of the four known fundamental forces in nature. The book thus provides a coherent outline of the present status of the theory gravity based on Feynman’s formulation, with an emphasis on quantitative results. Topics are organized in such a way that the correspondence to similar methods and results in modern gauge theories becomes apparent. Covariant perturbation theory are developed using the full machinery of Feynman rules, gauge fixing, background methods and ghosts. The renormalization group for gravity and the existence of non-trivial ultraviolet fixed points are investigated, stressing a close correspondence with well understood statistical field theory models. The final chapter addresses contemporary issues in quantum cosmology such as scale dependent gravitational constants and quantum effects in the early universe.

Quantum Fields in Curved Space

Quantum Fields in Curved Space PDF

Author: N. D. Birrell

Publisher: Cambridge University Press

Published: 1984-02-23

Total Pages: 362

ISBN-13: 1107392810

DOWNLOAD EBOOK →

This book presents a comprehensive review of the subject of gravitational effects in quantum field theory. Although the treatment is general, special emphasis is given to the Hawking black hole evaporation effect, and to particle creation processes in the early universe. The last decade has witnessed a phenomenal growth in this subject. This is the first attempt to collect and unify the vast literature that has contributed to this development. All the major technical results are presented, and the theory is developed carefully from first principles. Here is everything that students or researchers will need to embark upon calculations involving quantum effects of gravity at the so-called one-loop approximation level.

Quantum Gravity

Quantum Gravity PDF

Author: Domenico J. W. Giulini

Publisher: Springer Science & Business Media

Published: 2003-09-16

Total Pages: 426

ISBN-13: 9783540408109

DOWNLOAD EBOOK →

The relation between quantum theory and the theory of gravitation remains one of the most outstanding unresolved issues of modern physics. According to general expectation, general relativity as well as quantum (field) theory in a fixed background spacetime cannot be fundamentally correct. Hence there should exist a broader theory comprising both in appropriate limits, i.e., quantum gravity. This book gives readers a comprehensive introduction accessible to interested non-experts to the main issues surrounding the search for quantum gravity. These issues relate to fundamental questions concerning the various formalisms of quantization; specific questions concerning concrete processes, like gravitational collapse or black-hole evaporation; and the all important question concerning the possibility of experimental tests of quantum-gravity effects.

Conversations on Quantum Gravity

Conversations on Quantum Gravity PDF

Author: Jácome Armas

Publisher: Cambridge University Press

Published: 2021-08-26

Total Pages: 719

ISBN-13: 1107168872

DOWNLOAD EBOOK →

Leading theorists share their important insights into the ongoing quest of theoretical physics to find a quantum theory of gravity.

Loop Quantum Gravity For Everyone

Loop Quantum Gravity For Everyone PDF

Author: Rodolfo Gambini

Publisher: World Scientific

Published: 2020-01-08

Total Pages: 103

ISBN-13: 9811211973

DOWNLOAD EBOOK →

'In this remarkably well-written text, the authors introduce readers gently to the conceptual bricks of LQG without using any mathematics (quite an achievement). The debate started with the discovery that the space-time geometry of general relativity can be written in terms of the electromagnetic field. This led to intersecting graphs called loops. Now known as spin networks, they are the foundations of LQG. This slender volume discusses applications of LQG to black holes and cosmology and introduces the notion of spin foam, acknowledging that as yet the theory, though elegant, has no experimental confirmation … This book offers a fascinating introduction to an esoteric realm otherwise accessible to only a fortunate few.Summing Up: Highly recommended. Upper-division undergraduates. Graduate students and faculty researchers.'CHOICEChoice Outstanding Academic Title for 2020Loop quantum gravity is one of the main contenders to unify Einstein's general theory of relativity and quantum mechanics, therefore providing a quantum theory of gravity. If these words do not mean much to you, do not worry, we will define them in simple terms.This book describes loop quantum gravity and its applications to cosmology, black holes and spin foams without using formulas. It is concise and has a light style that makes for easy reading yet covering many of the cutting-edge developments in the field. It also addresses some of the controversies that surround these topics as they are incomplete science.

Quantum Field Theory in a Nutshell

Quantum Field Theory in a Nutshell PDF

Author: A. Zee

Publisher: Princeton University Press

Published: 2010-02-01

Total Pages: 608

ISBN-13: 1400835321

DOWNLOAD EBOOK →

A fully updated edition of the classic text by acclaimed physicist A. Zee Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. This expanded edition features several additional chapters, as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading. The most accessible and comprehensive introductory textbook available Features a fully revised, updated, and expanded text Covers the latest exciting advances in the field Includes new exercises Offers a one-of-a-kind resource for students and researchers Leading universities that have adopted this book include: Arizona State University Boston University Brandeis University Brown University California Institute of Technology Carnegie Mellon College of William & Mary Cornell Harvard University Massachusetts Institute of Technology Northwestern University Ohio State University Princeton University Purdue University - Main Campus Rensselaer Polytechnic Institute Rutgers University - New Brunswick Stanford University University of California - Berkeley University of Central Florida University of Chicago University of Michigan University of Montreal University of Notre Dame Vanderbilt University Virginia Tech University

Effects of Non-locality in Gravity and Quantum Theory

Effects of Non-locality in Gravity and Quantum Theory PDF

Author: Jens Boos

Publisher: Springer

Published: 2022-10-29

Total Pages: 0

ISBN-13: 9783030829124

DOWNLOAD EBOOK →

This thesis is devoted to the systematic study of non-local theories that respect Lorentz invariance and are devoid of new, unphysical degrees of freedom. Such theories are attractive for phenomenological applications since they are mostly unconstrained by current experiments. Non-locality has played an increasingly important role in the physics of the last decades, appearing in effective actions in quantum field theory, and arising naturally in string theory and non-commutative geometry. It may even be a necessary ingredient for quantum theories of gravity. It is a feature of quantum entanglement, and may even solve the long-standing black hole information loss problem. “Non-locality” is a broad concept with many promising and fruitful applications in theoretical and mathematical physics. After a historical and pedagogical introduction into the concept of non-locality the author develops the notion of non-local Green functions to study various non-local weak-field problems in quantum mechanics, quantum field theory, gravity, and quantum field theory in curved spacetime. This thesis fills a gap in the literature by providing a self-contained exploration of weak-field effects in non-local theories, thereby establishing a “non-local intuition” which may serve as a stepping stone for studies of the full, non-linear problem of non-locality.

Covariant Loop Quantum Gravity

Covariant Loop Quantum Gravity PDF

Author: Carlo Rovelli

Publisher: Cambridge University Press

Published: 2015

Total Pages: 267

ISBN-13: 1107069629

DOWNLOAD EBOOK →

A comprehensible introduction to the most fascinating research in theoretical physics: advanced quantum gravity. Ideal for researchers and graduate students.

Quantum Field Theory in Curved Spacetime

Quantum Field Theory in Curved Spacetime PDF

Author: Leonard Parker

Publisher: Cambridge University Press

Published: 2009-08-20

Total Pages: 472

ISBN-13: 1139480855

DOWNLOAD EBOOK →

Quantum field theory in curved spacetime has been remarkably fruitful. It can be used to explain how the large-scale structure of the universe and the anisotropies of the cosmic background radiation that we observe today first arose. Similarly, it provides a deep connection between general relativity, thermodynamics, and quantum field theory. This book develops quantum field theory in curved spacetime in a pedagogical style, suitable for graduate students. The authors present detailed, physically motivated, derivations of cosmological and black hole processes in which curved spacetime plays a key role. They explain how such processes in the rapidly expanding early universe leave observable consequences today, and how in the context of evaporating black holes, these processes uncover deep connections between gravitation and elementary particles. The authors also lucidly describe many other aspects of free and interacting quantized fields in curved spacetime.