Introduction to Path-integral Methods in Physics and Polymer Science

Introduction to Path-integral Methods in Physics and Polymer Science PDF

Author: Frederik W. Wiegel

Publisher: World Scientific

Published: 1986

Total Pages: 226

ISBN-13: 9789971978709

DOWNLOAD EBOOK →

This monograph distills material prepared by the author for class lectures, conferences and research seminars. It fills in a much-felt gap between the older and original work by Feynman and Hibbs and the more recent and advanced volume by Schulman. After presenting an elementary account on the Wiener path integral as applied to Brownian motion, the author progresses on to the statistics of polymers and polymer entanglements. The next three chapters provide an introduction to quantum statistical physics with emphasis on the conceptual understanding of many-variable systems. A chapter on the renormalization group provides material for starting on research work. The final chapter contains an over view of the role of path integrals in recent developments in physics. A good bibliography is provided for each chapter.

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets PDF

Author: Hagen Kleinert

Publisher: World Scientific

Published: 2009

Total Pages: 1626

ISBN-13: 9814273570

DOWNLOAD EBOOK →

Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket.

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets PDF

Author: Hagen Kleinert

Publisher: World Scientific Publishing Company

Published: 2006-07-19

Total Pages: 1592

ISBN-13: 9813101717

DOWNLOAD EBOOK →

This is the fourth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations. In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions. The powerful Feynman–Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals. Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders. Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern–Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect. The relevance of path integrals to financial markets is discussed, and improvements of the famous Black–Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions. The author's other book on ‘Critical Properties of φ4 Theories’ gives a thorough introduction to the field of critical phenomena and develops new powerful resummation techniques for the extraction of physical results from the divergent perturbation expansions.

Techniques and Applications of Path Integration

Techniques and Applications of Path Integration PDF

Author: L. S. Schulman

Publisher: Courier Corporation

Published: 2012-10-10

Total Pages: 434

ISBN-13: 0486137023

DOWNLOAD EBOOK →

Suitable for advanced undergraduates and graduate students, this text develops the techniques of path integration and deals with applications, covering a host of illustrative examples. 26 figures. 1981 edition.

Path Integrals

Path Integrals PDF

Author: George J. Papadopoulos

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 516

ISBN-13: 1468491407

DOWNLOAD EBOOK →

The Advanced Study Institute on "Path Integrals and Their Applications in Quantum, Statistical, and Solid State Physics" was held at the University of Antwerpen (R.U.C.A.), July 17-30, 1977. The Institute was sponsored by NATO. Co-sponsors were: A.C.E.C. (Belgium), Agfa-Gevaert (Belgium), l'Air Li~uide BeIge (Belgium), Be1gonucleaire (Belgium), Bell Telephone Mfg. Co. (Belgium), Boelwerf (Belgium), Generale BankmaatschappiJ (Belgium), I.B.M. (Belgium), Kredietbank (Belgium), National Science Foundation (U.S.A.), Siemens (Belgium). A total of 100 lecturers and partici pants attended the Institute. The development of path (or functional) integrals in relation to problems of stochastic nature dates back to the early 20's. At that time, Wiener succeeded in obtaining the fundamental solution of the diffusion e~uation using Einstein's joint probability of finding a Brownian particle in a succession of space intervals during a corresponding succession of time intervals. Dirac in the early 30's sowed the seeds of the path integral formulation of ~uantum mecha nics. However, the major and decisive step in this direction was taken with Feynman's works in ~uantum and statistical physics, and quantum electrodynamicso The applications now extend to areas such as continuous mechanics, and recently functional integration methods have been employed by Edwards for the study of polymerized matter

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets PDF

Author: Hagen Kleinert

Publisher: World Scientific Publishing Company

Published: 2006

Total Pages: 1602

ISBN-13:

DOWNLOAD EBOOK →

This is the fourth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations.In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions.The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals.Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders.Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect.The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.The author's other book on 'Critical Properties of φ4 Theories' gives a thorough introduction to the field of critical phenomena and develops new powerful resummation techniques for the extraction of physical results from the divergent perturbation expansions.

Path-integral Methods and Their Applications

Path-integral Methods and Their Applications PDF

Author: D. C. Khandekar

Publisher: World Scientific

Published: 1993

Total Pages: 362

ISBN-13: 9789810205638

DOWNLOAD EBOOK →

This book presents the major developments in this field with emphasis on application of path integration methods in diverse areas. After introducing the concept of path integrals, related topics like random walk, Brownian motion and Wiener integrals are discussed. Several techniques of path integration including global and local time transformations, numerical methods as well as approximation schemes are presented. The book provides a proper perspective of some of the most recent exact results and approximation schemes for practical applications.

Mathematical Feynman Path Integrals And Their Applications

Mathematical Feynman Path Integrals And Their Applications PDF

Author: Sonia Mazzucchi

Publisher: World Scientific

Published: 2009-05-22

Total Pages: 225

ISBN-13: 9814469270

DOWNLOAD EBOOK →

Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have devoted their efforts to the rigorous mathematical definition of Feynman's ideas.This volume provides a detailed, self-contained description of the mathematical difficulties as well as the possible techniques used to solve these difficulties. In particular, it gives a complete overview of the mathematical realization of Feynman path integrals in terms of well-defined functional integrals, that is, the infinite dimensional oscillatory integrals. It contains the traditional results on the topic as well as the more recent developments obtained by the author.Mathematical Feynman Path Integrals and Their Applications is devoted to both mathematicians and physicists, graduate students and researchers who are interested in the problem of mathematical foundations of Feynman path integrals.

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets PDF

Author: Hagen Kleinert

Publisher: World Scientific

Published: 2009

Total Pages: 1626

ISBN-13: 9814273554

DOWNLOAD EBOOK →

This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have been made possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's time-sliced formula to include singular attractive 1/r- and 1/r2-potentials. The second is a new nonholonomic mapping principle carrying physical laws in flat spacetime to spacetimes with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations. In addition to the time-sliced definition, the author gives a perturbative, coordinate-independent definition of path integrals, which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely products of distributions. The powerful FeynmanKleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent results. The convergence is uniform from weak to strong couplings, opening a way to precise evaluations of analytically unsolvable path integrals in the strong-coupling regime where they describe critical phenomena. Tunneling processes are treated in detail, with applications to the lifetimes of supercurrents, the stability of metastable thermodynamic phases, and thelarge-order behavior of perturbation expansions. A variational treatment extends the range of validity to small barriers. A corresponding extension of the large-order perturbation theory now also applies to small orders. Special attention is devoted to path integrals with topological restrictions needed to understand the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The ChernSimons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect. The relevance of path integrals to financial markets is discussed, and improvements of the famous BlackScholes formula for option prices are developed which account for the fact, recently experienced in the world markets, that large fluctuations occur much more frequently than in Gaussian distributions.