Introduction to Nonlinear Laser Spectroscopy

Introduction to Nonlinear Laser Spectroscopy PDF

Author: Marc Levenson

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 271

ISBN-13: 0323158447

DOWNLOAD EBOOK →

Introduction to Nonlinear Laser Spectroscopy focuses on the principles of nonlinear laser spectroscopy. This book discusses the experimental techniques of nonlinear optics and spectroscopy. Comprised of seven chapters, this book starts with an overview of the stimulated Raman effect and coherent anti-Stokes Raman spectroscopy, which can be used in a varied way to generate radiation in the ultraviolet and vacuum-ultraviolet areas. This text then explains the simplest quantum-mechanical system consisting of an isolated entity with energy eigenstates

Introduction to Nonlinear Laser Spectroscopy 2e

Introduction to Nonlinear Laser Spectroscopy 2e PDF

Author: Marc Levenson

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 317

ISBN-13: 0323156363

DOWNLOAD EBOOK →

Introduction to Nonlinear Laser Spectroscopy, Revised Edition presents the most useful nonlinear spectroscopy techniques at a level accessible to spectroscopists and graduate students unfamiliar with nonlinear optics. This book discusses the principles of nonlinear laser spectroscopy. Organized into seven chapters, this edition starts with an overview of the stimulated Raman effect and coherent anti-Stokes Raman spectroscopy, which can be used in a varied way to generate radiation in the ultraviolet and vacuum-ultraviolet areas. This text then explains the exciting possibilities started by saturated absorption and related techniques, including improved spectroscopic precision, studies of collisional dynamics, and better measurements of fundamental constants and of basic units. Other chapters examine Hamiltonian relaxation, which describes all of the processes that return the ensemble to thermal equilibrium. The final chapter deals with the method of infrared spectrophotography, which combines efficient detection, time resolution, and coherent infrared. Spectroscopists and graduate students will find this book extremely useful.

Introduction to Laser Spectroscopy

Introduction to Laser Spectroscopy PDF

Author: Halina Abramczyk

Publisher: Elsevier

Published: 2005-05-06

Total Pages: 331

ISBN-13: 0080455255

DOWNLOAD EBOOK →

Introduction to Laser Spectroscopy is a well-written, easy-to-read guide to understanding the fundamentals of lasers, experimental methods of modern laser spectroscopy and applications. It provides a solid grounding in the fundamentals of many aspects of laser physics, nonlinear optics, and molecular spectroscopy. In addition, by comprehensively combining theory and experimental techniques it explicates a variety of issues that are essential to understanding broad areas of physical, chemical and biological science. Topics include key laser types - gas, solid state, and semiconductor - as well as the rapidly evolving field of ultrashort laser phenomena for femtochemistry applications. The examples used are well researched and clearly presented. Introduction to Laser Spectroscopy is strongly recommended to newcomers as well as researchers in physics, engineering, chemistry and biology. * A comprehensive course that combines theory and practice * Includes a systematic and comprehensive description for key laser types * Written for students and professionals looking to gain a thorough understanding of modern laser spectroscopy

Principles of Laser Spectroscopy and Quantum Optics

Principles of Laser Spectroscopy and Quantum Optics PDF

Author: Paul R. Berman

Publisher: Princeton University Press

Published: 2010-12-13

Total Pages: 538

ISBN-13: 1400837049

DOWNLOAD EBOOK →

Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorption and saturation spectroscopy. Other topics include hole burning, dark states, slow light, and coherent transient spectroscopy, as well as atom optics and atom interferometry. In the second half of the text, the authors consider applications in which the radiation field is quantized. Topics include spontaneous decay, optical pumping, sub-Doppler laser cooling, the Heisenberg equations of motion for atomic and field operators, and light scattering by atoms in both weak and strong external fields. The concluding chapter offers methods for creating entangled and spin-squeezed states of matter. Instructors can create a one-semester course based on this book by combining the introductory chapters with a selection of the more advanced material. A solutions manual is available to teachers. Rigorous introduction to the interaction of optical fields with atoms Applications include linear and nonlinear spectroscopy, dark states, and slow light Extensive chapter on atom optics and atom interferometry Conclusion explores entangled and spin-squeezed states of matter Solutions manual (available only to teachers)

Laser Spectroscopy and Laser Imaging

Laser Spectroscopy and Laser Imaging PDF

Author: Helmut H. Telle

Publisher: CRC Press

Published: 2018-04-17

Total Pages: 751

ISBN-13: 1466588233

DOWNLOAD EBOOK →

"a very valuable book for graduate students and researchers in the field of Laser Spectroscopy, which I can fully recommend" —Wolfgang Demtröder, Kaiserslautern University of Technology How would it be possible to provide a coherent picture of this field given all the techniques available today? The authors have taken on this daunting task in this impressive, groundbreaking text. Readers will benefit from the broad overview of basic concepts, focusing on practical scientific and real-life applications of laser spectroscopic analysis and imaging. Chapters follow a consistent structure, beginning with a succinct summary of key principles and concepts, followed by an overview of applications, advantages and pitfalls, and finally a brief discussion of seminal advances and current developments. The examples used in this text span physics and chemistry to environmental science, biology, and medicine. Focuses on practical use in the laboratory and real-world applications Covers the basic concepts, common experimental setups Highlights advantages and caveats of the techniques Concludes each chapter with a snapshot of cutting-edge advances This book is appropriate for anyone in the physical sciences, biology, or medicine looking for an introduction to laser spectroscopic and imaging methodologies. Helmut H. Telle is a full professor at the Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain. Ángel González Ureña is head of the Department of Molecular Beams and Lasers, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain.

Laser Spectroscopy

Laser Spectroscopy PDF

Author: Wolfgang Demtröder

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 710

ISBN-13: 3662082578

DOWNLOAD EBOOK →

The impact of lasers on spectroscopy can hardly be overestimated. Lasers re present intense light sources with spectral energy densities which may exceed those of i ncoheren t sources by severa 1 orders of magnitude. Furthermore be cause of their extremely small bandwidth, single-mode lasers allow a spectral resolution which far exceeds that of conventional spectrometers. Many experi ments which could not be done before the application of lasers because of lack of intensity or insufficient resol ution are readily performed wi th lasers. Now several thousands of laser lines are known which span the whole spec tral range from the vacuum-ultraviolet to the far-infrared region. Of parti cular interest are the continuously tunable lasers which may in many cases replace wavelength-selecting elements, such as spectrometers or interferome ters. In combination with optical frequency mixing, techniques such conti nuously tunable monochromatic coherent light sources are available at nearly any desired wavelength above 100 nm.

Photonics

Photonics PDF

Author: Ralf Menzel

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 895

ISBN-13: 3662045214

DOWNLOAD EBOOK →

Deals with the fundamental properties of photon and light beams, both experimentally and theoretically. It covers the essentials of linear interactions and most of the nonlinear interactions between light and matter in both the transparent and absorbing cases. About 4000 references open access to original literature.