Introduction to Modeling in Physiology and Medicine

Introduction to Modeling in Physiology and Medicine PDF

Author: Claudio Cobelli

Publisher: Elsevier

Published: 2008-02-06

Total Pages: 337

ISBN-13: 0080559980

DOWNLOAD EBOOK →

This unified modeling textbook for students of biomedical engineering provides a complete course text on the foundations, theory and practice of modeling and simulation in physiology and medicine. It is dedicated to the needs of biomedical engineering and clinical students, supported by applied BME applications and examples. Developed for biomedical engineering and related courses: speaks to BME students at a level and in a language appropriate to their needs, with an interdisciplinary clinical/engineering approach, quantitative basis, and many applied examples to enhance learning Delivers a quantitative approach to modeling and also covers simulation: the perfect foundation text for studies across BME and medicine Extensive case studies and engineering applications from BME, plus end-of-chapter exercises

Modelling Methodology for Physiology and Medicine

Modelling Methodology for Physiology and Medicine PDF

Author: Ewart Carson

Publisher: Newnes

Published: 2013-12-05

Total Pages: 588

ISBN-13: 0124095259

DOWNLOAD EBOOK →

Modelling Methodology for Physiology and Medicine, Second Edition, offers a unique approach and an unprecedented range of coverage of the state-of-the-art, advanced modeling methodology that is widely applicable to physiology and medicine. The second edition, which is completely updated and expanded, opens with a clear and integrated treatment of advanced methodology for developing mathematical models of physiology and medical systems. Readers are then shown how to apply this methodology beneficially to real-world problems in physiology and medicine, such as circulation and respiration. The focus of Modelling Methodology for Physiology and Medicine, Second Edition, is the methodology that underpins good modeling practice. It builds upon the idea of an integrated methodology for the development and testing of mathematical models. It covers many specific areas of methodology in which important advances have taken place over recent years and illustrates the application of good methodological practice in key areas of physiology and medicine. It builds on work that the editors have carried out over the past 30 years, working in cooperation with leading practitioners in the field. Builds upon and enhances the reader's existing knowledge of modeling methodology and practice Editors are internationally renowned leaders in their respective fields Provides an understanding of modeling methodologies that can address real problems in physiology and medicine and achieve results that are beneficial either in advancing research or in providing solutions to clinical problems

Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology

Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology PDF

Author: Willem L. van Meurs

Publisher: McGraw Hill Professional

Published: 2011-08-07

Total Pages: 216

ISBN-13: 0071714464

DOWNLOAD EBOOK →

THEORY AND PRACTICE OF MODELING AND SIMULATING HUMAN PHYSIOLOGY Written by a coinventor of the Human Patient Simulator (HPS) and past president of the Society in Europe for Simulation Applied to Medicine (SESAM), Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology is a compact and consistent introduction to this expanding field. The book divides the modeling and simulation process into five manageable steps--requirements, conceptual models, mathematical models, software implementation, and simulation results and validation. A framework and a basic set of deterministic, continuous-time models for the cardiorespiratory system are provided. This timely resource also addresses advanced topics, including sensitivity analysis and setting model requirements as part of an encompassing simulation and simulator design. Practical examples provide you with the skills to evaluate and adapt existing physiologic models or create new ones for specific applications. Coverage includes: Signals and systems Model requirements Conceptual models Mathematical models Software implementation Simulation results and model validation Cardiorespiratory system model Circulation Respiration Physiologic control Sensitivity analysis of a cardiovascular model Design of model-driven acute care training simulators “Uniquely qualified to author such a text, van Meurs is one of the original developers of CAE Healthcare’s Human Patient Simulator (HPS). ...His understanding of mathematics, human physiology, pharmacology, control systems, and systems engineering, combined with a conversational writing style, results in a readable text. ...The ample illustrations and tables also break up the text and make reading the book easier on the eyes. ...concise yet in conversational style, with real-life examples. This book is highly recommended for coursework in physiologic modeling and for all who are interested in simulator design and development. The book pulls all these topics together under one cover and is an important contribution to biomedical literature.” --IEEE Pulse, January 2014 “This book is written by a professional engineer who is unique in that he seems to have a natural understanding of 3 key areas as follows: the hardware involved with simulators, human physiology, and mathematical modeling. Willem van Meurs is one of the inventors of the model-driven human patient simulator (HPS), and so, he is very qualified to write this book. The book is written in a clear way, using the first person throughout, in a conversational manner, with a style that involves posing questions and answering them in subsequent text. ...The book starts with a very useful introduction and background chapter, setting out the scene for the rest of the book. ...I have used his book in enhancing my own talks and understanding human patient simulation and can strongly recommend it.” --Simulation in Healthcare December, 2012 Reviewed by Mark A. Tooley, Ph.D., Department of Medical Physics and Bioengineering, Royal United Hospital, Combe Park, Bath, UK.

Mathematics in Medicine and the Life Sciences

Mathematics in Medicine and the Life Sciences PDF

Author: Frank C. Hoppensteadt

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 257

ISBN-13: 1475741316

DOWNLOAD EBOOK →

The aim of this book is to introduce the subject of mathematical modeling in the life sciences. It is intended for students of mathematics, the physical sciences, and engineering who are curious about biology. Additionally, it will be useful to students of the life sciences and medicine who are unsatisfied with mere description and who seek an understanding of biological mechanism and dynamics through the use of mathematics. The book will be particularly useful to premedical students, because it will introduce them not only to a collection of mathematical methods but also to an assortment of phenomena involving genetics, epidemics, and the physiology of the heart, lung, and kidney. Because of its introductory character, mathematical prerequisites are kept to a minimum; they involve only what is usually covered in the first semester of a calculus sequence. The authors have drawn on their extensive experience as modelers to select examples which are simple enough to be understood at this elementary level and yet realistic enough to capture the essence of significant biological phenomena drawn from the areas of population dynamics and physiology. Because the models presented are realistic, the book can serve not only as an introduction to mathematical methods but also as a mathematical introduction to the biological material itself. For the student, who enjoys mathematics, such an introduction will be far more stimulating and satisfying than the purely descriptive approach that is traditional in the biological sciences.

Nonlinear Dynamic Modeling of Physiological Systems

Nonlinear Dynamic Modeling of Physiological Systems PDF

Author: Professor Vasilis Z. Marmarelis

Publisher: John Wiley & Sons

Published: 2004-09-03

Total Pages: 564

ISBN-13: 9780471469605

DOWNLOAD EBOOK →

The study of nonlinearities in physiology has been hindered by the lack of effective ways to obtain nonlinear dynamic models from stimulus-response data in a practical context. A considerable body of knowledge has accumulated over the last thirty years in this area of research. This book summarizes that progress, and details the most recent methodologies that offer practical solutions to this daunting problem. Implementation and application are discussed, and examples are provided using both synthetic and actual experimental data. This essential study of nonlinearities in physiology apprises researchers and students of the latest findings and techniques in the field.

Modeling and Simulation in Medicine and the Life Sciences

Modeling and Simulation in Medicine and the Life Sciences PDF

Author: Frank C. Hoppensteadt

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 362

ISBN-13: 0387215719

DOWNLOAD EBOOK →

The result of lectures given by the authors at New York University, the University of Utah, and Michigan State University, the material is written for students who have had only one term of calculus, but it contains material that can be used in modeling courses in applied mathematics at all levels through early graduate courses. Numerous exercises are given as well as solutions to selected exercises, so as to lead readers to discover interesting extensions of that material. Throughout, illustrations depict physiological processes, population biology phenomena, corresponding models, and the results of computer simulations. Topics covered range from population phenomena to demographics, genetics, epidemics and dispersal; in physiological processes, including the circulation, gas exchange in the lungs, control of cell volume, the renal counter-current multiplier mechanism, and muscle mechanics; to mechanisms of neural control. Each chapter is graded in difficulty, so a reading of the first parts of each provides an elementary introduction to the processes and their models.

Mathematical Modeling and Validation in Physiology

Mathematical Modeling and Validation in Physiology PDF

Author: Jerry J. Batzel

Publisher: Springer

Published: 2012-12-14

Total Pages: 270

ISBN-13: 3642328822

DOWNLOAD EBOOK →

This volume synthesizes theoretical and practical aspects of both the mathematical and life science viewpoints needed for modeling of the cardiovascular-respiratory system specifically and physiological systems generally. Theoretical points include model design, model complexity and validation in the light of available data, as well as control theory approaches to feedback delay and Kalman filter applications to parameter identification. State of the art approaches using parameter sensitivity are discussed for enhancing model identifiability through joint analysis of model structure and data. Practical examples illustrate model development at various levels of complexity based on given physiological information. The sensitivity-based approaches for examining model identifiability are illustrated by means of specific modeling examples. The themes presented address the current problem of patient-specific model adaptation in the clinical setting, where data is typically limited.

Signals and Systems in Biomedical Engineering

Signals and Systems in Biomedical Engineering PDF

Author: Suresh R. Devasahayam

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 348

ISBN-13: 1461542995

DOWNLOAD EBOOK →

In the past few years Biomedical Engineering has received a great deal of attention as one of the emerging technologies in the last decade and for years to come, as witnessed by the many books, conferences, and their proceedings. Media attention, due to the applications-oriented advances in Biomedical Engineering, has also increased. Much of the excitement comes from the fact that technology is rapidly changing and new technological adventures become available and feasible every day. For many years the physical sciences contributed to medicine in the form of expertise in radiology and slow but steady contributions to other more diverse fields, such as computers in surgery and diagnosis, neurology, cardiology, vision and visual prosthesis, audition and hearing aids, artificial limbs, biomechanics, and biomaterials. The list goes on. It is therefore hard for a person unfamiliar with a subject to separate the substance from the hype. Many of the applications of Biomedical Engineering are rather complex and difficult to understand even by the not so novice in the field. Much of the hardware and software tools available are either too simplistic to be useful or too complicated to be understood and applied. In addition, the lack of a common language between engineers and computer scientists and their counterparts in the medical profession, sometimes becomes a barrier to progress.