Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods

Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods PDF

Author: Victor N. Kaliakin

Publisher: CRC Press

Published: 2018-04-19

Total Pages: 695

ISBN-13: 1482271125

DOWNLOAD EBOOK →

Functions as a self-study guide for engineers and as a textbook for nonengineering students and engineering students, emphasizing generic forms of differential equations, applying approximate solution techniques to examples, and progressing to specific physical problems in modular, self-contained chapters that integrate into the text or can stand alone! This reference/text focuses on classical approximate solution techniques such as the finite difference method, the method of weighted residuals, and variation methods, culminating in an introduction to the finite element method (FEM). Discusses the general notion of approximate solutions and associated errors! With 1500 equations and more than 750 references, drawings, and tables, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods: Describes the approximate solution of ordinary and partial differential equations using the finite difference method Covers the method of weighted residuals, including specific weighting and trial functions Considers variational methods Highlights all aspects associated with the formulation of finite element equations Outlines meshing of the solution domain, nodal specifications, solution of global equations, solution refinement, and assessment of results Containing appendices that present concise overviews of topics and serve as rudimentary tutorials for professionals and students without a background in computational mechanics, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods is a blue-chip reference for civil, mechanical, structural, aerospace, and industrial engineers, and a practical text for upper-level undergraduate and graduate students studying approximate solution techniques and the FEM.

Finite Elements and Approximation

Finite Elements and Approximation PDF

Author: O. C. Zienkiewicz

Publisher: Courier Corporation

Published: 2013-04-22

Total Pages: 356

ISBN-13: 048631801X

DOWNLOAD EBOOK →

A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises. Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher order finite element approximation, mapping and numerical integration, variational methods, and partial discretization and time-dependent problems. A survey of generalized finite elements and error estimates concludes the text.

Approximate Solution Methods in Engineering Mechanics

Approximate Solution Methods in Engineering Mechanics PDF

Author: Arthur P. Boresi

Publisher: John Wiley & Sons

Published: 2003

Total Pages: 284

ISBN-13: 9780471402428

DOWNLOAD EBOOK →

The only complete collection of prevalent approximation methods Unlike any other resource, Approximate Solution Methods in Engineering Mechanics, Second Edition offers in-depth coverage of the most common approximate numerical methods used in the solution of physical problems, including those used in popular computer modeling packages. Descriptions of each approximation method are presented with the latest relevant research and developments, providing thorough, working knowledge of the methods and their principles. Approximation methods covered include: * Boundary element method (BEM) * Weighted residuals method * Finite difference method (FDM) * Finite element method (FEM) * Finite strip/layer/prism methods * Meshless method Approximate Solution Methods in Engineering Mechanics, Second Edition is a valuable reference guide for mechanical, aerospace, and civil engineers, as well as students in these disciplines.

Numerical Solution of Partial Differential Equations by the Finite Element Method

Numerical Solution of Partial Differential Equations by the Finite Element Method PDF

Author: Claes Johnson

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 290

ISBN-13: 0486131599

DOWNLOAD EBOOK →

An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

Finite Element Method, The: Its Fundamentals And Applications In Engineering

Finite Element Method, The: Its Fundamentals And Applications In Engineering PDF

Author: John Zhangxin Chen

Publisher: World Scientific Publishing Company

Published: 2011-10-06

Total Pages: 349

ISBN-13: 9813100656

DOWNLOAD EBOOK →

This Finite Element Method offers a fundamental and practical introduction to the finite element method, its variants, and their applications in engineering. Every concept is introduced in the simplest possible setting, while maintaining a level of treatment that is as rigorous as possible without being unnecessarily abstract. Various finite elements in one, two, and three space dimensions are introduced, and their applications to elliptic, parabolic, hyperbolic, and nonlinear equations and to solid mechanics, fluid mechanics, and porous media flow problems are addressed. The variants include the control volume, multipoint flux approximation, nonconforming, mixed, discontinuous, characteristic, adaptive, and multiscale finite element methods. Illustrative computer programs in Fortran and C++ are described. An extensive set of exercises are provided in each chapter. This book serves as a text a for one-semester course for upper-level undergraduates and beginning graduate students and as a professional reference for engineers, mathematicians, and scientists.

The Finite Element Method: Theory, Implementation, and Applications

The Finite Element Method: Theory, Implementation, and Applications PDF

Author: Mats G. Larson

Publisher: Springer Science & Business Media

Published: 2013-01-13

Total Pages: 403

ISBN-13: 3642332870

DOWNLOAD EBOOK →

This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​

Computational Methods for Geodynamics

Computational Methods for Geodynamics PDF

Author: Alik Ismail-Zadeh

Publisher: Cambridge University Press

Published: 2010-07-22

Total Pages: 333

ISBN-13: 1139489356

DOWNLOAD EBOOK →

Written as both a textbook and a handy reference, this text deliberately avoids complex mathematics assuming only basic familiarity with geodynamic theory and calculus. Here, the authors have brought together the key numerical techniques for geodynamic modeling, demonstrations of how to solve problems including lithospheric deformation, mantle convection and the geodynamo. Building from a discussion of the fundamental principles of mathematical and numerical modeling, the text moves into critical examinations of each of the different techniques before concluding with a detailed analysis of specific geodynamic applications. Key differences between methods and their respective limitations are also discussed - showing readers when and how to apply a particular method in order to produce the most accurate results. This is an essential text for advanced courses on numerical and computational modeling in geodynamics and geophysics, and an invaluable resource for researchers looking to master cutting-edge techniques. Links to supplementary computer codes are available online.

Finite Element Method

Finite Element Method PDF

Author: Gouri Dhatt

Publisher: John Wiley & Sons

Published: 2012-12-27

Total Pages: 495

ISBN-13: 1118569709

DOWNLOAD EBOOK →

This book offers an in-depth presentation of the finite element method, aimed at engineers, students and researchers in applied sciences. The description of the method is presented in such a way as to be usable in any domain of application. The level of mathematical expertise required is limited to differential and matrix calculus. The various stages necessary for the implementation of the method are clearly identified, with a chapter given over to each one: approximation, construction of the integral forms, matrix organization, solution of the algebraic systems and architecture of programs. The final chapter lays the foundations for a general program, written in Matlab, which can be used to solve problems that are linear or otherwise, stationary or transient, presented in relation to applications stemming from the domains of structural mechanics, fluid mechanics and heat transfer.