Interpolation of Rational Matrix Functions

Interpolation of Rational Matrix Functions PDF

Author: Joseph Ball

Publisher: Birkhäuser

Published: 2013-11-11

Total Pages: 616

ISBN-13: 3034877099

DOWNLOAD EBOOK →

This book aims to present the theory of interpolation for rational matrix functions as a recently matured independent mathematical subject with its own problems, methods and applications. The authors decided to start working on this book during the regional CBMS conference in Lincoln, Nebraska organized by F. Gilfeather and D. Larson. The principal lecturer, J. William Helton, presented ten lectures on operator and systems theory and the interplay between them. The conference was very stimulating and helped us to decide that the time was ripe for a book on interpolation for matrix valued functions (both rational and non-rational). When the work started and the first partial draft of the book was ready it became clear that the topic is vast and that the rational case by itself with its applications is already enough material for an interesting book. In the process of writing the book, methods for the rational case were developed and refined. As a result we are now able to present the rational case as an independent theory. After two years a major part of the first draft was prepared. Then a long period of revising the original draft and introducing recently acquired results and methods followed. There followed a period of polishing and of 25 chapters and the appendix commuting at various times somewhere between Williamsburg, Blacksburg, Tel Aviv, College Park and Amsterdam (sometimes with one or two of the authors).

Topics in Interpolation Theory of Rational Matrix-valued Functions

Topics in Interpolation Theory of Rational Matrix-valued Functions PDF

Author: I. Gohberg

Publisher: Birkhäuser

Published: 2013-11-21

Total Pages: 257

ISBN-13: 3034854692

DOWNLOAD EBOOK →

One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , " " Z/ are the given zeros with given multiplicates nl, " " n / and Wb" " W are the given p poles with given multiplicities ml, . . . ,m , and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj :f: wk(1~ j ~ 1, 1~ k~ p) and nl +. . . +n/ = ml +. . . +m ' p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj's are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n.

Interpolation and Approximation by Rational Functions in the Complex Domain

Interpolation and Approximation by Rational Functions in the Complex Domain PDF

Author: J. L. Walsh

Publisher: American Mathematical Soc.

Published: 1935-12-31

Total Pages: 418

ISBN-13: 0821810200

DOWNLOAD EBOOK →

The present work is restricted to the representation of functions in the complex domain, particularly analytic functions, by sequences of polynomials or of more general rational functions whose poles are preassigned, the sequences being defined either by interpolation or by extremal properties (i.e. best approximation). Taylor's series plays a central role in this entire study, for it has properties of both interpolation and best approximation, and serves as a guide throughout the whole treatise. Indeed, almost every result given on the representation of functions is concerned with a generalization either of Taylor's series or of some property of Taylor's series--the title ``Generalizations of Taylor's Series'' would be appropriate.