Interior Point Approach to Linear, Quadratic and Convex Programming

Interior Point Approach to Linear, Quadratic and Convex Programming PDF

Author: D. den Hertog

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 214

ISBN-13: 9401111340

DOWNLOAD EBOOK →

This book describes the rapidly developing field of interior point methods (IPMs). An extensive analysis is given of path-following methods for linear programming, quadratic programming and convex programming. These methods, which form a subclass of interior point methods, follow the central path, which is an analytic curve defined by the problem. Relatively simple and elegant proofs for polynomiality are given. The theory is illustrated using several explicit examples. Moreover, an overview of other classes of IPMs is given. It is shown that all these methods rely on the same notion as the path-following methods: all these methods use the central path implicitly or explicitly as a reference path to go to the optimum. For specialists in IPMs as well as those seeking an introduction to IPMs. The book is accessible to any mathematician with basic mathematical programming knowledge.

Interior-point Polynomial Algorithms in Convex Programming

Interior-point Polynomial Algorithms in Convex Programming PDF

Author: Yurii Nesterov

Publisher: SIAM

Published: 1994-01-01

Total Pages: 414

ISBN-13: 9781611970791

DOWNLOAD EBOOK →

Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.

A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems

A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems PDF

Author: Masakazu Kojima

Publisher: Springer Science & Business Media

Published: 1991-09-25

Total Pages: 124

ISBN-13: 9783540545095

DOWNLOAD EBOOK →

Following Karmarkar's 1984 linear programming algorithm, numerous interior-point algorithms have been proposed for various mathematical programming problems such as linear programming, convex quadratic programming and convex programming in general. This monograph presents a study of interior-point algorithms for the linear complementarity problem (LCP) which is known as a mathematical model for primal-dual pairs of linear programs and convex quadratic programs. A large family of potential reduction algorithms is presented in a unified way for the class of LCPs where the underlying matrix has nonnegative principal minors (P0-matrix). This class includes various important subclasses such as positive semi-definite matrices, P-matrices, P*-matrices introduced in this monograph, and column sufficient matrices. The family contains not only the usual potential reduction algorithms but also path following algorithms and a damped Newton method for the LCP. The main topics are global convergence, global linear convergence, and the polynomial-time convergence of potential reduction algorithms included in the family.

Interior Point Methods of Mathematical Programming

Interior Point Methods of Mathematical Programming PDF

Author: Tamás Terlaky

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 544

ISBN-13: 1461334497

DOWNLOAD EBOOK →

One has to make everything as simple as possible but, never more simple. Albert Einstein Discovery consists of seeing what every body has seen and thinking what nobody has thought. Albert S. ent_Gyorgy; The primary goal of this book is to provide an introduction to the theory of Interior Point Methods (IPMs) in Mathematical Programming. At the same time, we try to present a quick overview of the impact of extensions of IPMs on smooth nonlinear optimization and to demonstrate the potential of IPMs for solving difficult practical problems. The Simplex Method has dominated the theory and practice of mathematical pro gramming since 1947 when Dantzig discovered it. In the fifties and sixties several attempts were made to develop alternative solution methods. At that time the prin cipal base of interior point methods was also developed, for example in the work of Frisch (1955), Caroll (1961), Huard (1967), Fiacco and McCormick (1968) and Dikin (1967). In 1972 Klee and Minty made explicit that in the worst case some variants of the simplex method may require an exponential amount of work to solve Linear Programming (LP) problems. This was at the time when complexity theory became a topic of great interest. People started to classify mathematical programming prob lems as efficiently (in polynomial time) solvable and as difficult (NP-hard) problems. For a while it remained open whether LP was solvable in polynomial time or not. The break-through resolution ofthis problem was obtained by Khachijan (1989).

Convex Optimization

Convex Optimization PDF

Author: Stephen P. Boyd

Publisher: Cambridge University Press

Published: 2004-03-08

Total Pages: 744

ISBN-13: 9780521833783

DOWNLOAD EBOOK →

Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Primal-dual Interior-Point Methods

Primal-dual Interior-Point Methods PDF

Author: Stephen J. Wright

Publisher: SIAM

Published: 1997-01-01

Total Pages: 309

ISBN-13: 9781611971453

DOWNLOAD EBOOK →

In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.

Interior Point Algorithms

Interior Point Algorithms PDF

Author: Yinyu Ye

Publisher: John Wiley & Sons

Published: 2011-10-11

Total Pages: 440

ISBN-13: 1118030958

DOWNLOAD EBOOK →

The first comprehensive review of the theory and practice of one oftoday's most powerful optimization techniques. The explosive growth of research into and development of interiorpoint algorithms over the past two decades has significantlyimproved the complexity of linear programming and yielded some oftoday's most sophisticated computing techniques. This book offers acomprehensive and thorough treatment of the theory, analysis, andimplementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basicand advanced aspects of the subject. Beginning with an overview offundamental mathematical procedures, Professor Yinyu Ye movesswiftly on to in-depth explorations of numerous computationalproblems and the algorithms that have been developed to solve them.An indispensable text/reference for students and researchers inapplied mathematics, computer science, operations research,management science, and engineering, Interior Point Algorithms: * Derives various complexity results for linear and convexprogramming * Emphasizes interior point geometry and potential theory * Covers state-of-the-art results for extension, implementation,and other cutting-edge computational techniques * Explores the hottest new research topics, including nonlinearprogramming and nonconvex optimization.

A Mathematical View of Interior-point Methods in Convex Optimization

A Mathematical View of Interior-point Methods in Convex Optimization PDF

Author: James Renegar

Publisher: SIAM

Published: 2001-01-01

Total Pages: 124

ISBN-13: 9780898718812

DOWNLOAD EBOOK →

Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.