Integration Techniques for Micro/Nanostructure-based Large-Area Electronics

Integration Techniques for Micro/Nanostructure-based Large-Area Electronics PDF

Author: Carlos García Núñez

Publisher: Cambridge University Press

Published: 2018-11-08

Total Pages: 168

ISBN-13: 1108574939

DOWNLOAD EBOOK →

Advanced nanostructured materials such as organic and inorganic micro/nanostructures are excellent building blocks for electronics, optoelectronics, sensing, and photovoltaics because of their high-crystallinity, long aspect-ratio, high surface-to-volume ratio, and low dimensionality. However, their assembly over large areas and integration in functional circuits are a matter of intensive investigation. This Element provides detailed description of various technologies to realize micro/nanostructures based large-area electronics (LAE) devices on rigid or flexible/stretchable substrates. The first section of this Element provides an introduction to the state-of-the-art integration techniques used to fabricate LAE devices based on different kind of micro/nanostructures. The second section describes inorganic and organic micro/nanostructures, including most common and promising synthesis procedures. In the third section,different techniques are explained that have great potential for integration of micro/nanostructures over large areas. Finally, the fourth section summarizes important remarks about LAE devices based on micro/nanostructures, and future directions.

Stretchable Systems

Stretchable Systems PDF

Author: Yogeenth Kumaresan

Publisher: Cambridge University Press

Published: 2022-01-27

Total Pages: 124

ISBN-13: 1108899587

DOWNLOAD EBOOK →

Stretchable electronics is one of the transformative pillars of future flexible electronics. As a result, the research on new passive and active materials, novel designs, and engineering approaches has attracted significant interest. Recent studies have highlighted the importance of new approaches that enable the integration of high-performance materials, including, organic and inorganic compounds, carbon-based and layered materials, and composites to serve as conductors, semiconductors or insulators, with the ability to accommodate electronics on stretchable substrates. This Element presents a discussion about the strategies that have been developed for obtaining stretchable systems, with a focus on various stretchable geometries to achieve strain invariant electrical response, and summarises the recent advances in terms of material research, various integration techniques of high-performance electronics. In addition, some of the applications, challenges and opportunities associated with the development of stretchable electronics are discussed.

Interconnect Technologies for Integrated Circuits and Flexible Electronics

Interconnect Technologies for Integrated Circuits and Flexible Electronics PDF

Author: Yash Agrawal

Publisher: Springer Nature

Published: 2023-10-17

Total Pages: 286

ISBN-13: 9819944767

DOWNLOAD EBOOK →

This contributed book provides a thorough understanding of the basics along with detailed state-of-the-art emerging interconnect technologies for integrated circuit design and flexible electronics. It focuses on the investigation of advanced on-chip interconnects which match the current as well as future technology requirements. The contents focus on different aspects of interconnects such as material, physical characteristics, parasitic extraction, design, structure, modeling, machine learning, and neural network-based models for interconnects, signaling schemes, varying signal integrity performance analysis, variability, reliability aspects, associated electronic design automation tools. The book also explores interconnect technologies for flexible electronic systems. It also highlights the integration of sensors with stretchable interconnects to demonstrate the concept of a stretchable sensing network for wearable and flexible applications. This book is a useful guide for those working in academia and industry to understand the fundamentals and application of interconnect technologies.

Hybrid Systems-in-Foil

Hybrid Systems-in-Foil PDF

Author: Mourad Elsobky

Publisher: Cambridge University Press

Published: 2021-10-14

Total Pages: 92

ISBN-13: 1108983383

DOWNLOAD EBOOK →

Hybrid Systems-in-Foil (HySiF) is a concept that extends the potential of conventional More-than-More Systems-in/on-Package (SiPs and SoPs) to the flexible electronics world. In HySiF, an economical implementation of flexible electronic systems is possible by integrating a minimum number of embedded silicon chips and a maximum number of on-foil components. Here, the complementary characteristics of CMOS SoCs and larger area organic and printed electronics are combined in a HySiF-compatible polymeric substrate. Within the HySiF scope, the fabrication process steps and the integration design rules with all the accompanying boundary conditions concerning material compatibility, surface properties, and thermal budget, are defined. This Element serves as an introduction to the HySiF concept. A summary of recent ultra-thin chip fabrication and flexible packaging techniques is provided. Several bendable electronic components are presented demonstrating the benefits of HySiF. Finally, prototypes of flexible wireless sensor systems that adopt the HySiF concept are demonstrated.

Advances in Semiconductor Technologies

Advances in Semiconductor Technologies PDF

Author: An Chen

Publisher: John Wiley & Sons

Published: 2022-09-27

Total Pages: 372

ISBN-13: 1119869609

DOWNLOAD EBOOK →

Advances in Semiconductor Technologies Discover the broad sweep of semiconductor technologies in this uniquely curated resource Semiconductor technologies and innovations have been the backbone of numerous different fields: electronics, online commerce, the information and communication industry, and the defense industry. For over fifty years, silicon technology and CMOS scaling have been the central focus and primary driver of innovation in the semiconductor industry. Traditional CMOS scaling has approached some fundamental limits, and as a result, the pace of scientific research and discovery for novel semiconductor technologies is increasing with a focus on novel materials, devices, designs, architectures, and computer paradigms. In particular, new computing paradigms and systems—such as quantum computing, artificial intelligence, and Internet of Things—have the potential to unlock unprecedented power and application space. Advances in Semiconductor Technologies provides a comprehensive overview of selected semiconductor technologies and the most up-to-date research topics, looking in particular at mainstream developments in current industry research and development, from emerging materials and devices, to new computing paradigms and applications. This full-coverage volume gives the reader valuable insights into state-of-the-art advances currently being fabricated, a wide range of novel applications currently under investigation, and a glance into the future with emerging technologies in development. Advances in Semiconductor Technologies readers will also find: A comprehensive approach that ensures a thorough understanding of state-of-the-art technologies currently being fabricated Treatments on all aspects of semiconductor technologies, including materials, devices, manufacturing, modeling, design, architecture, and applications Articles written by an impressive team of international academics and industry insiders that provide unique insights into a wide range of topics Advances in Semiconductor Technologies is a useful, time-saving reference for electrical engineers working in industry and research, who are looking to stay abreast of rapidly advancing developments in semiconductor electronics, as well as academics in the field and government policy advisors.

1D Semiconducting Nanostructures for Flexible and Large-Area Electronics

1D Semiconducting Nanostructures for Flexible and Large-Area Electronics PDF

Author: Dhayalan Shakthivel

Publisher: Cambridge University Press

Published: 2019-10-31

Total Pages: 158

ISBN-13: 1108624162

DOWNLOAD EBOOK →

Semiconducting nanostructures such as nanowires (NWs) have been used as building blocks for various types of sensors, energy storage and generation devices, electronic devices and for new manufacturing methods involving printed NWs. The response of these sensing/energy/electronic components and the new fabrication methods depends very much on the quality of NWs and for this reason it is important to understand the growth mechanism of 1D semiconducting nanostructures. This is also important to understand the compatibility of NW growth steps and tools used in the process with these unconventional substrates such as plastic that are used in flexible and large area electronics. Therefore, this Element presents at length discussion about the growth mechanisms, growth conditions and the tools used for the synthesis of NWs. Although NWs from Si, ZnO and carbon nanotubes (CNTs) are included, the discussion is generic and relevant to several other types of NWs as well as heterostructures.

Nanomembranes

Nanomembranes PDF

Author: Yongfeng Mei

Publisher: John Wiley & Sons

Published: 2022-06-15

Total Pages: 599

ISBN-13: 3527813926

DOWNLOAD EBOOK →

Nanomembranes Provides a thorough overview of the field of nanomembranes, covering materials science, fabrication processes, properties, and applications In recent years, the unique nature of the nanomembrane has led to new technology and applications in areas including flexible electronics, photonics, robotics, biology, microelectromechanical systems, and lab-on-a-chip (LOC) devices. Highly suitable for assembling three-dimensional structures, the nanomembrane can be integrated into devices and systems using conventional thin film technology. Nanomembranes: Materials, Properties, and Applications is an up-to-date review of recent advances in the rapidly expanding area within nanoscience and technology. Edited by leading researchers, the book covers the fabrications, properties, applications, design concepts, and challenges of nanomembranes and other nano-scale assembled structures. In-depth chapters address topics including three- and four-dimensional origami, nanomembrane-based transient electronics, development of inorganic flexible electronics, magnetic nanomembranes, bio-applications of three-dimensional scaffolds, nanomembrane-based micro and nanorobots, passive electronic components based on self-rolled-up nanomembranes, and more. Covers nanomembranes as well as nanostructures made from semiconductor, metal, insulator, polymer, and composite materials Provides broad overview of two-dimensional materials and assembled structures including origami and kirigami structures Explores applications of nanomembrane such as batteries, supercapacitors, robotics, electronics, and cell scaffolding Discusses nanomembranes made from polymeric materials, mechanical forces during deformation, and assembly of nanomembranes, Addresses monolayer two-dimensional materials such as graphene and transition metal dichalcogenides Nanomembranes: Materials, Properties, and Applications is an invaluable resource for material scientists, engineers, physicists, and chemists in academia and industry, and an excellent text for graduate students and researchers across disciplines with interest in the rapidly growing field.

1D Semiconducting Nanostructures for Flexible and Large-Area Electronics

1D Semiconducting Nanostructures for Flexible and Large-Area Electronics PDF

Author: Dhayalan Shakthivel

Publisher: Cambridge University Press

Published: 2019-10-31

Total Pages: 75

ISBN-13: 9781108724654

DOWNLOAD EBOOK →

Semiconducting nanostructures such as nanowires (NWs) have been used as building blocks for various types of sensors, energy storage and generation devices, electronic devices and for new manufacturing methods involving printed NWs. The response of these sensing/energy/electronic components and the new fabrication methods depends very much on the quality of NWs and for this reason it is important to understand the growth mechanism of 1D semiconducting nanostructures. This is also important to understand the compatibility of NW growth steps and tools used in the process with these unconventional substrates such as plastic that are used in flexible and large area electronics. Therefore, this Element presents at length discussion about the growth mechanisms, growth conditions and the tools used for the synthesis of NWs. Although NWs from Si, ZnO and carbon nanotubes (CNTs) are included, the discussion is generic and relevant to several other types of NWs as well as heterostructures.