Integrating Advanced High-throughput Technologies to Improve Plant Resilience to Environmental Challenges

Integrating Advanced High-throughput Technologies to Improve Plant Resilience to Environmental Challenges PDF

Author: Freddy Mora-Poblete

Publisher: Frontiers Media SA

Published: 2023-06-28

Total Pages: 179

ISBN-13: 2832527000

DOWNLOAD EBOOK →

High-throughput technologies are those that allow the generation of large-scale data related to omic analysis (such as genomics, transcriptomics, proteomics, phenomics, and metabolomics). Currently, the development and use of these technologies has gone hand-in-hand with the development of bioinformatics tools, which have allowed the integration of omics-based data to understand crucial knowledge about the molecular systems that underlie the various functions of the plants. In recent years, there has been a huge development in the field of high-throughput biology, which is attributed to an era of tech startups. Genomics studies in plants, for instance, have benefited from advances in high-throughput technologies, such as high-throughput genotyping, which have allowed us to investigate the regulation and function of thousands of genes and genomic regions involved in a novel adaptation. In fact, with current high-throughput technologies, it is possible to recover substantial portions of the plant diversity, which is a key input for genetic improvement programs, food security and conservation programs. The integration of multilevel biological data, involving investigations at the molecular level (in genomics, transcriptomics, proteomics, and metabolomics, among others), have allowed more comprehensive studies, which broadens the opportunities to clarify key molecular aspects involved in the physiological responses to abiotic stresses.

Plant Speed Breeding and High-throughput Technologies

Plant Speed Breeding and High-throughput Technologies PDF

Author: Jen-Tsung Chen

Publisher: CRC Press

Published: 2024-08-26

Total Pages: 410

ISBN-13: 1040091229

DOWNLOAD EBOOK →

The research field of “plant speed breeding" is promising to meet the future demand for crop improvement in an efficient and effective manner. The process accelerates breeding and research programs through the shortening of the generation time of crops. Plant Speed Breeding and High-Throughput Technologies explores and analyzes a range of innovations from CRISPR/Cas9-based genome editing to state-of-the-art controlled-environment growth chambers. The book integrates achievements of plant speed breeding technologies with an emphasis on the fundamental and advanced systems for genome editing, functional genomics, controlled-environment growth chambers, genomic and phenotypic selection methods, and high-throughput technologies. It examines the applications of technologies across major model plants and key crops such as cereals, vegetables, and fruit trees. The book explores high-throughput genotyping using next-generation sequencing systems, enabling precise single nucleotide polymorphism markers, quantitative trait loci mapping, and genome-wide association studies . These tools are used in identifying candidate genes that will revolutionize crop breeding, as they are capable of tolerating complex abiotic and biotic stresses induced by global climate change. Serving as an ideal reference on plant speed breeding technologies, this book is for graduate students, teachers, researchers, and experts in the fields of plant sciences and plant breeding as well as agronomy and agriculture.

Science Breakthroughs to Advance Food and Agricultural Research by 2030

Science Breakthroughs to Advance Food and Agricultural Research by 2030 PDF

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2019-04-21

Total Pages: 243

ISBN-13: 0309473926

DOWNLOAD EBOOK →

For nearly a century, scientific advances have fueled progress in U.S. agriculture to enable American producers to deliver safe and abundant food domestically and provide a trade surplus in bulk and high-value agricultural commodities and foods. Today, the U.S. food and agricultural enterprise faces formidable challenges that will test its long-term sustainability, competitiveness, and resilience. On its current path, future productivity in the U.S. agricultural system is likely to come with trade-offs. The success of agriculture is tied to natural systems, and these systems are showing signs of stress, even more so with the change in climate. More than a third of the food produced is unconsumed, an unacceptable loss of food and nutrients at a time of heightened global food demand. Increased food animal production to meet greater demand will generate more greenhouse gas emissions and excess animal waste. The U.S. food supply is generally secure, but is not immune to the costly and deadly shocks of continuing outbreaks of food-borne illness or to the constant threat of pests and pathogens to crops, livestock, and poultry. U.S. farmers and producers are at the front lines and will need more tools to manage the pressures they face. Science Breakthroughs to Advance Food and Agricultural Research by 2030 identifies innovative, emerging scientific advances for making the U.S. food and agricultural system more efficient, resilient, and sustainable. This report explores the availability of relatively new scientific developments across all disciplines that could accelerate progress toward these goals. It identifies the most promising scientific breakthroughs that could have the greatest positive impact on food and agriculture, and that are possible to achieve in the next decade (by 2030).

Recent Advances in Research and Development for Vegetable Crops Under Protected Cultivation

Recent Advances in Research and Development for Vegetable Crops Under Protected Cultivation PDF

Author: Giao Nguyen

Publisher: Frontiers Media SA

Published: 2024-08-05

Total Pages: 139

ISBN-13: 2832552617

DOWNLOAD EBOOK →

Protected cropping shelters crops from extreme climatic conditions by modifying the internal growing conditions in their favor. The technology has widely been used for vegetable crops in different climates such as temperate, tropical, subtropical, arid, and semi-arid regions. As climate change is projected to become more severe in the near future, the resulting adverse weather conditions such as higher temperatures, more frequent heatwaves, more variable rainfall patterns, and cyclones will affect vegetable production, in turn affecting crop growth, yield, produce quality, and economic return of growers. The demand for protected cultivation will increase to ensure sustainable production and a stable supply of fresh horticultural produce.

Genetically Engineered Crops

Genetically Engineered Crops PDF

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2017-01-28

Total Pages: 607

ISBN-13: 0309437385

DOWNLOAD EBOOK →

Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.

Genome Engineering for Crop Improvement

Genome Engineering for Crop Improvement PDF

Author: Bidyut Kumar Sarmah

Publisher: Springer Nature

Published: 2021-04-18

Total Pages: 277

ISBN-13: 3030633721

DOWNLOAD EBOOK →

This book serves the teachers, researchers and the students as a handy and concise reference as well as guidebook while designing and planning for use of the advanced technologies for crop improvement. The content of the book is designed to cover the latest genome engineering techniques for crop improvement. The conventional breeding has got its limitations such as non-availability of desired genes within the genepool. In many cases, breeding has been highly used and it has nearly reached its highest limit so far as the productivity and production of crops are concerned. However, with increasing need of food and decreasing resources, including water, land, labour, etc., to feed the growing population, the alternative available ways of increasing crop productivity need to be explored and exploited. Genome engineering has a wide scope that includes technologies such as genetic engineering and transgenesis, RNA technologies, CRISPR, cisgenics and subgenics for better productivity and more efficient biotic and abiotic stress management. Therefore, the book is planned to enlighten the readers with the advanced technologies with examples and case studies, whenever possible. Efforts will be made to emphasize on general efforts on various major food crops; however, it would also be made clear that such efforts could be taken as proofs of concepts and that this could be extrapolated keeping the demand in mind.

High-Throughput Crop Phenotyping

High-Throughput Crop Phenotyping PDF

Author: Jianfeng Zhou

Publisher: Springer Nature

Published: 2021-07-17

Total Pages: 249

ISBN-13: 3030737349

DOWNLOAD EBOOK →

This book provides an overview of the innovations in crop phenotyping using emerging technologies, i.e., high-throughput crop phenotyping technology, including its concept, importance, breakthrough and applications in different crops and environments. Emerging technologies in sensing, machine vision and high-performance computing are changing the world beyond our imagination. They are also becoming the most powerful driver of the innovation in agriculture technology, including crop breeding, genetics and management. It includes the state of the art of technologies in high-throughput phenotyping, including advanced sensors, automation systems, ground-based or aerial robotic systems. It also discusses the emerging technologies of big data processing and analytics, such as advanced machine learning and deep learning technologies based on high-performance computing infrastructure. The applications cover different organ levels (root, shoot and seed) of different crops (grains, soybean, maize, potato) at different growth environments (open field and controlled environments). With the contribution of more than 20 world-leading researchers in high-throughput crop phenotyping, the authors hope this book provides readers the needed information to understand the concept, gain the insides and create the innovation of high-throughput phenotyping technology.