Model Predictive Control in the Process Industry

Model Predictive Control in the Process Industry PDF

Author: Eduardo F. Camacho

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 250

ISBN-13: 1447130081

DOWNLOAD EBOOK →

Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.

Distributed Model Predictive Control Made Easy

Distributed Model Predictive Control Made Easy PDF

Author: José M. Maestre

Publisher: Springer Science & Business Media

Published: 2013-11-10

Total Pages: 601

ISBN-13: 9400770065

DOWNLOAD EBOOK →

The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those who want to gain a deeper insight in the wide range of distributed MPC techniques available.

Cooperative Traffic Control Framework for Mixed Vehicular Flows

Cooperative Traffic Control Framework for Mixed Vehicular Flows PDF

Author: Mohammad Karimi

Publisher:

Published: 2020

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK →

A prompt revolution is foreseen in the transportation sector, when the current conventional human-driven vehicles will be replaced by fully connected and automated vehicles. As a result, there will be a transition period where both types will coexist until the later type is fully adopted in the traffic networks. This new mix of traffic flow on the existing transportation network will require developing a new ecosystem able to accommodate both types of vehicles in traffic network environments of the future. A major challenging issue related to the emerging mixed transportation ecosystem is the lack of an adequate model and control framework. This is especially important for modeling traffic safety and operations at network bottlenecks such as highway merging areas. Therefore, the main goal of this thesis is to develop a microscopic modeling and hierarchical cooperative control framework specifically for mixed traffic at highway on-ramps. In this thesis, a two-level hierarchical traffic control framework is proposed for mixed traffic at highway merging areas. In this regard, for the lower level of the proposed framework, this thesis establishes a set of fundamental trajectory-based cooperative control algorithms for different merging scenarios under mixed traffic conditions. We identify six scenarios, consisting of triplets of vehicles, defined based on the different combinations of CAVs and conventional vehicles. For each triplet, different consecutive movement phases along with corresponding desired distance and velocity set-points are defined. Via the movement phases, the CAVs engaged in each triplet cooperate to calculate their optimal-smooth trajectories aiming at facilitating the merging maneuver while complying with the realistic constraints related to the safety and comfort of vehicle occupants. The vehicles in each triplet are modeled by a distinct system, and a Model Predictive Control scheme is employed to calculate the cooperative optimal control inputs (acceleration values) for CAVs, accounting for conventional vehicles' uncertainties. In the next step of the thesis, for the higher level of the proposed framework, a merging sequence determination and triplets' formation methodology is developed based on predicting the arrival time of vehicles into the merging area and according to the priority in choosing different triplet types. To model the merging maneuvers when two consecutive triplets share a vehicle, the interactions between triplets of vehicles are also investigated. In order to develop a microscopic traffic simulator, we analytically formulate different vehicles' driving behaviors under cooperative (i.e., the proposed traffic control framework) and non-cooperative (i.e., normal) operation modes and discuss the switching conditions between these driving modes. To evaluate the effectiveness of the proposed framework, first, each triplet is simulated in MATLAB and evaluated for different sets of system initial values. Without a need for readjusting the algorithm for different initial values, the simulation results show that the proposed cooperative merging algorithms ensure smooth merging maneuvers while satisfying all the prescribed constraints, e.g., speed limits, safe distances, and comfortable acceleration and jerk values. Moreover, a simulator is developed in MATLAB for the entire framework (including both the higher and lower level of the framework) to evaluate the impact of all the triplets on continuous mixed traffic flow. Different penetration rates of CAVs under different traffic flow conditions are evaluated through the developed simulator. The simulation results show that the proposed cooperative methodology, comparing to the non-cooperative operation, can improve the average travel time of merging vehicles without disturbing the mainstream flow, provide safer merging maneuvers by avoiding the merging vehicles to stop at the end of the acceleration lane, and guarantee smooth motion trajectories for CAVs (i.e., derivable position and speed along with limited changes in acceleration values). Generally, the results emphasize that the proposed cooperative traffic control framework can improve the mixed traffic conditions in terms of both traffic safety and operations. Moreover, the simulator provides a tool for the transportation community to evaluate their existing infrastructures under different penetration rates of CAVs and examine different traffic control plans for a mixed traffic environment. As the merging maneuver is only one application of gap-acceptance models, other types of maneuvers (e.g., lane changing, vehicle turning, etc.) can be similarly modelled. Thus, we can extend the proposed framework to the multi-lane highways, roundabouts, and urban area intersections. Furthermore, the arrival time prediction of the vehicles can be improved to elevate the performance of the proposed framework during the very congested traffic conditions.

Networked and Distributed Predictive Control

Networked and Distributed Predictive Control PDF

Author: Panagiotis D. Christofides

Publisher: Springer Science & Business Media

Published: 2011-04-07

Total Pages: 253

ISBN-13: 0857295829

DOWNLOAD EBOOK →

Networked and Distributed Predictive Control presents rigorous, yet practical, methods for the design of networked and distributed predictive control systems – the first book to do so. The design of model predictive control systems using Lyapunov-based techniques accounting for the influence of asynchronous and delayed measurements is followed by a treatment of networked control architecture development. This shows how networked control can augment dedicated control systems in a natural way and takes advantage of additional, potentially asynchronous and delayed measurements to maintain closed loop stability and significantly to improve closed-loop performance. The text then shifts focus to the design of distributed predictive control systems that cooperate efficiently in computing optimal manipulated input trajectories that achieve desired stability, performance and robustness specifications but spend a fraction of the time required by centralized control systems. Key features of this book include: • new techniques for networked and distributed control system design; • insight into issues associated with networked and distributed predictive control and their solution; • detailed appraisal of industrial relevance using computer simulation of nonlinear chemical process networks and wind- and solar-energy-generation systems; and • integrated exposition of novel research topics and rich resource of references to significant recent work. A full understanding of Networked and Distributed Predictive Control requires a basic knowledge of differential equations, linear and nonlinear control theory and optimization methods and the book is intended for academic researchers and graduate students studying control and for process control engineers. The constant attention to practical matters associated with implementation of the theory discussed will help each of these groups understand the application of the book’s methods in greater depth.

Traffic Congestion Control by PDE Backstepping

Traffic Congestion Control by PDE Backstepping PDF

Author: Huan Yu

Publisher: Springer Nature

Published: 2022-12-16

Total Pages: 363

ISBN-13: 3031193466

DOWNLOAD EBOOK →

This monograph explores the design of controllers that suppress oscillations and instabilities in congested traffic flow using PDE backstepping methods. The first part of the text is concerned with basic backstepping control of freeway traffic using the Aw-Rascle-Zhang (ARZ) second-order PDE model. It begins by illustrating a basic control problem – suppressing traffic with stop-and-go oscillations downstream of ramp metering – before turning to the more challenging case for traffic upstream of ramp metering. The authors demonstrate how to design state observers for the purpose of stabilization using output-feedback control. Experimental traffic data are then used to calibrate the ARZ model and validate the boundary observer design. Because large uncertainties may arise in traffic models, adaptive control and reinforcement learning methods are also explored in detail. Part II then extends the conventional ARZ model utilized until this point in order to address more complex traffic conditions: multi-lane traffic, multi-class traffic, networks of freeway segments, and driver use of routing apps. The final chapters demonstrate the use of the Lighthill-Whitham-Richards (LWR) first-order PDE model to regulate congestion in traffic flows and to optimize flow through a bottleneck. In order to make the text self-contained, an introduction to the PDE backstepping method for systems of coupled first-order hyperbolic PDEs is included. Traffic Congestion Control by PDE Backstepping is ideal for control theorists working on control of systems modeled by PDEs and for traffic engineers and applied scientists working on unsteady traffic flows. It will also be a valuable resource for researchers interested in boundary control of coupled systems of first-order hyperbolic PDEs.

Nutritional Care of the Patient with Gastrointestinal Disease

Nutritional Care of the Patient with Gastrointestinal Disease PDF

Author: Alan L Buchman

Publisher: CRC Press

Published: 2015-08-06

Total Pages: 3428

ISBN-13: 1138001236

DOWNLOAD EBOOK →

This evidence-based book serves as a clinical manual as well as a reference guide for the diagnosis and management of common nutritional issues in relation to gastrointestinal disease. Chapters cover nutrition assessment; macro- and micronutrient absorption; malabsorption; food allergies; prebiotics and dietary fiber; probiotics and intestinal microflora; nutrition and GI cancer; nutritional management of reflux; nutrition in IBS and IBD; nutrition in acute and chronic pancreatitis; enteral nutrition; parenteral nutrition; medical and endoscopic therapy of obesity; surgical therapy of obesity; pharmacologic nutrition, and nutritional counseling.

Recent Advances in Information and Communication Technology 2018

Recent Advances in Information and Communication Technology 2018 PDF

Author: Herwig Unger

Publisher: Springer

Published: 2018-06-26

Total Pages: 348

ISBN-13: 3319936921

DOWNLOAD EBOOK →

This book contains the research contributions presented at the 14th International Conference on Computing and Information Technology (IC2IT 2018) organised by King Mongkut’s University of Technology North Bangkok and its partners, and held in the northern Thai city of Chiang Mai in July 2018. Traditionally, IC2IT 2018 provides a forum for exchange on the state of the art and on expected future developments in its field. Correspondingly, this book contains chapters on topics in data mining, machine learning, natural language processing, image processing, networks and security, software engineering and information technology. With them, the editors want to foster inspiring discussions among colleagues, not only during the conference. It is also intended to contribute to a deeper understanding of the underlying problems as needed to solve them in complex environments and, beneficial for this purpose, to encourage interdisciplinary cooperation.