Integral Methods in Science and Engineering

Integral Methods in Science and Engineering PDF

Author: Christian Constanda

Publisher: CRC Press

Published: 1997-10-08

Total Pages: 252

ISBN-13: 9780582304062

DOWNLOAD EBOOK →

Based on proceedings of the International Conference on Integral Methods in Science and Engineering, this collection of papers addresses the solution of mathematical problems by integral methods in conjunction with approximation schemes from various physical domains. Topics and applications include: wavelet expansions, reaction-diffusion systems, variational methods, fracture theory, boundary value problems at resonance, micromechanics, fluid mechanics, combustion problems, nonlinear problems, elasticity theory, and plates and shells.

Integral Methods in Science and Engineering

Integral Methods in Science and Engineering PDF

Author: Christian Constanda

Publisher: Springer Nature

Published: 2023-10-31

Total Pages: 407

ISBN-13: 303134099X

DOWNLOAD EBOOK →

This volume contains a collection of articles on state-of-the-art developments in the construction of theoretical integral techniques and their application to specific problems in science and engineering. Chapters in this book are based on talks given at the Seventeenth International Conference on Integral Methods in Science and Engineering, held virtually in July 2022, and are written by internationally recognized researchers. This collection will be of interest to researchers in applied mathematics, physics, and mechanical, electrical, and petroleum engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential working tool.

Integral Methods in Science and Engineering

Integral Methods in Science and Engineering PDF

Author: Barbara S Bertram

Publisher: CRC Press

Published: 2019-05-20

Total Pages: 380

ISBN-13: 9781420036039

DOWNLOAD EBOOK →

Based on proceedings of the International Conference on Integral Methods in Science and Engineering, this collection of papers addresses the solution of mathematical problems by integral methods in conjunction with approximation schemes from various physical domains. Topics and applications include: wavelet expansions, reaction-diffusion systems, variational methods , fracture theory, boundary value problems at resonance, micromechanics, fluid mechanics, combustion problems, nonlinear problems, elasticity theory, and plates and shells.

Advanced Mathematical Methods in Science and Engineering

Advanced Mathematical Methods in Science and Engineering PDF

Author: S.I. Hayek

Publisher: CRC Press

Published: 2010-06-22

Total Pages: 862

ISBN-13: 1420081985

DOWNLOAD EBOOK →

Classroom-tested, Advanced Mathematical Methods in Science and Engineering, Second Edition presents methods of applied mathematics that are particularly suited to address physical problems in science and engineering. Numerous examples illustrate the various methods of solution and answers to the end-of-chapter problems are included at the back of the book. After introducing integration and solution methods of ordinary differential equations (ODEs), the book presents Bessel and Legendre functions as well as the derivation and methods of solution of linear boundary value problems for physical systems in one spatial dimension governed by ODEs. It also covers complex variables, calculus, and integrals; linear partial differential equations (PDEs) in classical physics and engineering; the derivation of integral transforms; Green’s functions for ODEs and PDEs; asymptotic methods for evaluating integrals; and the asymptotic solution of ODEs. New to this edition, the final chapter offers an extensive treatment of numerical methods for solving non-linear equations, finite difference differentiation and integration, initial value and boundary value ODEs, and PDEs in mathematical physics. Chapters that cover boundary value problems and PDEs contain derivations of the governing differential equations in many fields of applied physics and engineering, such as wave mechanics, acoustics, heat flow in solids, diffusion of liquids and gases, and fluid flow. An update of a bestseller, this second edition continues to give students the strong foundation needed to apply mathematical techniques to the physical phenomena encountered in scientific and engineering applications.

Integral Methods in Science and Engineering

Integral Methods in Science and Engineering PDF

Author: Christian Constanda

Publisher: Springer

Published: 2019-07-18

Total Pages: 478

ISBN-13: 3030160777

DOWNLOAD EBOOK →

This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this book are based on talks given at the Fifteenth International Conference on Integral Methods in Science and Engineering, held July 16-20, 2018 at the University of Brighton, UK, and are written by internationally recognized researchers. The topics addressed are wide ranging, and include: Asymptotic analysis Boundary-domain integral equations Viscoplastic fluid flow Stationary waves Interior Neumann shape optimization Self-configuring neural networks This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.

Mathematical Methods in Science and Engineering

Mathematical Methods in Science and Engineering PDF

Author: Selcuk S. Bayin

Publisher: John Wiley & Sons

Published: 2018-02-26

Total Pages: 1112

ISBN-13: 111942545X

DOWNLOAD EBOOK →

A Practical, Interdisciplinary Guide to Advanced Mathematical Methods for Scientists and Engineers Mathematical Methods in Science and Engineering, Second Edition, provides students and scientists with a detailed mathematical reference for advanced analysis and computational methodologies. Making complex tools accessible, this invaluable resource is designed for both the classroom and the practitioners; the modular format allows flexibility of coverage, while the text itself is formatted to provide essential information without detailed study. Highly practical discussion focuses on the “how-to” aspect of each topic presented, yet provides enough theory to reinforce central processes and mechanisms. Recent growing interest in interdisciplinary studies has brought scientists together from physics, chemistry, biology, economy, and finance to expand advanced mathematical methods beyond theoretical physics. This book is written with this multi-disciplinary group in mind, emphasizing practical solutions for diverse applications and the development of a new interdisciplinary science. Revised and expanded for increased utility, this new Second Edition: Includes over 60 new sections and subsections more useful to a multidisciplinary audience Contains new examples, new figures, new problems, and more fluid arguments Presents a detailed discussion on the most frequently encountered special functions in science and engineering Provides a systematic treatment of special functions in terms of the Sturm-Liouville theory Approaches second-order differential equations of physics and engineering from the factorization perspective Includes extensive discussion of coordinate transformations and tensors, complex analysis, fractional calculus, integral transforms, Green's functions, path integrals, and more Extensively reworked to provide increased utility to a broader audience, this book provides a self-contained three-semester course for curriculum, self-study, or reference. As more scientific disciplines begin to lean more heavily on advanced mathematical analysis, this resource will prove to be an invaluable addition to any bookshelf.

Integral Methods in Science and Engineering, Volume 2

Integral Methods in Science and Engineering, Volume 2 PDF

Author: Christian Constanda

Publisher: Birkhäuser

Published: 2017-09-08

Total Pages: 312

ISBN-13: 3319593870

DOWNLOAD EBOOK →

This contributed volume contains a collection of articles on the most recent advances in integral methods. The second of two volumes, this work focuses on the applications of integral methods to specific problems in science and engineering. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as:• Boundary elements• Transport problems• Option pricing• Gas reservoirs• Electromagnetic scattering This collection will be of interest to researchers in applied mathematics, physics, and mechanical and petroleum engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.

Integral Methods in Science and Engineering

Integral Methods in Science and Engineering PDF

Author: Christian Constanda

Publisher: Springer Science & Business Media

Published: 2011-07-25

Total Pages: 429

ISBN-13: 0817682384

DOWNLOAD EBOOK →

An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques and their use in specific science and engineering problems. This book will be valuable for researchers in applied mathematics, physics, and mechanical and electrical engineering. It will likewise be a useful study guide for graduate students in these disciplines, and for various other professionals who use integration as an essential technique in their work.