Dynamics of Gas-Surface Scattering

Dynamics of Gas-Surface Scattering PDF

Author: Frank O. Goodman

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 352

ISBN-13: 0323154611

DOWNLOAD EBOOK →

Dynamics of Gas-Surface Scattering deals with the dynamics of scattering as inferred from known properties of gases and solids. This book discusses measurements of spatial distributions of scattered atomic and molecular streams, and of the energy and momentum which gas particles exchange at solid surfaces. It also considers two regimes of scattering, both of which are associated with a lower range of incident gas energies: the thermal and structure scattering regimes. Comprised of 10 chapters, this book opens with a brief historical overview of the early experiments that investigated the dynamics of scattering of gases by surfaces. The discussion then turns to some elements of the kinetic theory of gases; intermodular potentials and interaction regimes; and classical-mechanical lattice models used in gas-surface scattering theory. The applications of molecular beams to the study of gas-surface scattering phenomena are also described. The remaining chapters focus on experiments and theories on scattering of molecular streams by surfaces of solids, with emphasis on thermal and structure regimes of inelastic scattering; quantum theory of gas-surface scattering; and quantum mechanical scattering phenomena. This text concludes with an analysis of energy exchange processes that may occur when a solid surface is completely immersed in a still gas. This monograph will be a valuable resource for students and practitioners of physics, chemistry, and applied mathematics.

Dynamics of Gas-Surface Interactions

Dynamics of Gas-Surface Interactions PDF

Author: Ricardo Diez Muino

Publisher: Springer Science & Business Media

Published: 2013-02-26

Total Pages: 439

ISBN-13: 3642329551

DOWNLOAD EBOOK →

This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level understanding of physical and chemical processes at surfaces, with particular emphasis on dynamical aspects. This book is a reference in the field.

Heterogeneous Reaction Dynamics

Heterogeneous Reaction Dynamics PDF

Author: S. Bernasek

Publisher: John Wiley & Sons

Published: 1995-10-12

Total Pages: 186

ISBN-13: 9780471185475

DOWNLOAD EBOOK →

This is an in-depth monograph covering the topic of energy transfer and reactions on solid surfaces. This topic is of great interest now because of its applications to catalysis and solid-state electronics, including the manufacture of semiconductors, integrated circuits and other solid state devices. Initially it describes what is meant by heterogenous reaction dynamics. Basically, this is the study, on a molecular level, of the elementary dynamics of energy transfer and reactions at surface. The emphasis of the book will be on well characterized solid surfaces. Energy transfer and reactions are broadly defined to include phase transitions in adsorbed layers, diffusion, the absorption process itself, and energy transfer between adsorbate and subtrate, as well as gas-surface energy transfer, catalytic and oxidative type surface reactions.