Industrial Applications Of Ultrafast Lasers

Industrial Applications Of Ultrafast Lasers PDF

Author: Haight Richard A

Publisher: World Scientific

Published: 2018-03-16

Total Pages: 208

ISBN-13: 981456902X

DOWNLOAD EBOOK →

This book describes the application of ultrafast laser science and technology in materials and processing relevant to industry today, including ultrafast laser ablation where fundamental studies have led to the development of the world's first femtosecond photomask repair tool. Semiconductor manufacturing companies worldwide use the tool to repair photomask defects, saving hundreds of millions in production costs. The most up-to-date ultrafast laser technologies are described and methods to generate high harmonics for photoelectron spectroscopy of industrially important materials are covered, with an emphasis on practical laboratory implementation. Basic device physics merged with photoemission studies from single- and polycrystalline materials are described. Extensions to new methods for extracting key device properties of metal-oxide-semiconductor structures, including band offsets, effective work functions, semiconductor band bending and defect-related charging in a number of technologically important gate oxides are detailed. Polycrystalline photovoltaic materials and heterostructures as well as organic light emitting materials are covered. This book describes both the history, and most recent applications of ultrafast laser science to industrially relevant materials, processes and devices.

Industrial Applications of Ultrafast Lasers

Industrial Applications of Ultrafast Lasers PDF

Author: Richard Haight

Publisher:

Published: 2014

Total Pages:

ISBN-13: 9789814569019

DOWNLOAD EBOOK →

This book describes the application of ultrafast laser science and technology in materials and processing relevant to industry today, including ultrafast laser ablation where fundamental studies have led to the development of the world's first femtosecond photomask repair tool. Semiconductor manufacturing companies worldwide use the tool to repair photomask defects, saving hundreds of millions in production costs. The most up-to-date ultrafast laser technologies are described and methods to generate high harmonics for photoelectron spectroscopy of industrially important materials are covered, with an emphasis on practical laboratory implementation. Basic device physics merged with photoemission studies from single- and polycrystalline materials are described. Extensions to new methods for extracting key device properties of metal-oxide-semiconductor structures, including band offsets, effective work functions, semiconductor band bending and defect-related charging in a number of technologically important gate oxides are detailed. Polycrystalline photovoltaic materials and heterostructures as well as organic light emitting materials are covered. This book describes both the history, and most recent applications of ultrafast laser science to industrially relevant materials, processes and devices."

Ultrafast Lasers

Ultrafast Lasers PDF

Author: Martin E. Fermann

Publisher: CRC Press

Published: 2002-10-25

Total Pages: 728

ISBN-13: 0824743490

DOWNLOAD EBOOK →

Covering high-energy ultrafast amplifiers and solid-state, fiber, and diode lasers, this reference examines recent developments in high-speed laser technology. It presents a comprehensive survey of ultrafast laser technology, its applications, and future trends in various scientific and industrial areas. Topics include: micromachining applications for metals, dielectrics, and biological tissue; advanced electronics and semiconductor processing; optical coherence tomography; multiphoton microscopy; optical sampling and scanning; THz generation and imaging; optical communication systems; absolute phase control of optical signals; and more.

Ultrafast Lasers

Ultrafast Lasers PDF

Author: Martin E. Fermann

Publisher: CRC Press

Published: 2002-10-25

Total Pages: 808

ISBN-13: 9780203910207

DOWNLOAD EBOOK →

Covering high-energy ultrafast amplifiers and solid-state, fiber, and diode lasers, this reference examines recent developments in high-speed laser technology. It presents a comprehensive survey of ultrafast laser technology, its applications, and future trends in various scientific and industrial areas. Topics include: micromachining applications

Ultrashort Pulse Laser Technology

Ultrashort Pulse Laser Technology PDF

Author: Stefan Nolte

Publisher: Springer

Published: 2015-10-19

Total Pages: 365

ISBN-13: 3319176595

DOWNLOAD EBOOK →

Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

Ultrafast Laser Processing

Ultrafast Laser Processing PDF

Author: Koji Sugioka

Publisher: CRC Press

Published: 2013-06-24

Total Pages: 606

ISBN-13: 9814303690

DOWNLOAD EBOOK →

Over the past few decades, the rapid development of ultrafast lasers, such as femtosecond lasers and picosecond lasers, has opened up new avenues for material processing due to their unique features such as ultrashort pulse width and extremely high peak intensity. These techniques have become a common tool for micro- and nanoprocessing of a variety

Solid State PhysicsMetastable, Spintronics Materials and Mechanics of Deformable Bodies

Solid State PhysicsMetastable, Spintronics Materials and Mechanics of Deformable Bodies PDF

Author: Subbarayan Sivasankaran

Publisher: BoD – Books on Demand

Published: 2020-05-27

Total Pages: 238

ISBN-13: 1838811648

DOWNLOAD EBOOK →

This book describes the recent evolution of solid-state physics, which is primarily dedicated to examining the behavior of solids at the atomic scale. It also presents various state-of-the-art reviews and original contributions related to solid-state sciences. The book consists of four sections, namely, solid-state behavior, metastable materials, spintronics materials, and mechanics of deformable bodies. The authors’ contributions relating to solid-state behavior deal with the performance of solid matters pertaining to quantum mechanics, physical metallurgy, and crystallography. The authors’ contributions relating to metastable materials demonstrate the behavior of amorphous/bulk metallic glasses and some nonequilibrium materials. The authors’ contributions relating to spintronic materials explain the principles and equations underlying the physics, transport, and dynamics of spin in solid-state systems. The authors’ contributions relating to the mechanics of deformable bodies deal with applications of numeric and analytic solutions/models for solid-state structures under deformation. Key Features:Issues in solid-state physics, Lagrangian quantum mechanics,Quantum and thermal behavior of HCP crystals,Thermoelectric properties of semiconductors,Bulk metallic glasses and metastable atomic density determination,Applications of spintronics and Heusler alloys, 2D elastostatic, mathematical modeling and dynamic stiffness methods on deformable bodies.

Opportunities in Intense Ultrafast Lasers

Opportunities in Intense Ultrafast Lasers PDF

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2018-03-03

Total Pages: 347

ISBN-13: 0309467691

DOWNLOAD EBOOK →

The laser has revolutionized many areas of science and society, providing bright and versatile light sources that transform the ways we investigate science and enables trillions of dollars of commerce. Now a second laser revolution is underway with pulsed petawatt-class lasers (1 petawatt: 1 million billion watts) that deliver nearly 100 times the total world's power concentrated into a pulse that lasts less than one-trillionth of a second. Such light sources create unique, extreme laboratory conditions that can accelerate and collide intense beams of elementary particles, drive nuclear reactions, heat matter to conditions found in stars, or even create matter out of the empty vacuum. These powerful lasers came largely from U.S. engineering, and the science and technology opportunities they enable were discussed in several previous National Academies' reports. Based on these advances, the principal research funding agencies in Europe and Asia began in the last decade to invest heavily in new facilities that will employ these high-intensity lasers for fundamental and applied science. No similar programs exist in the United States. Opportunities in Intense Ultrafast Lasers assesses the opportunities and recommends a path forward for possible U.S. investments in this area of science.

Femtosecond Technology for Technical and Medical Applications

Femtosecond Technology for Technical and Medical Applications PDF

Author: Friedrich Dausinger

Publisher: Springer Science & Business Media

Published: 2004-10-14

Total Pages: 350

ISBN-13: 9783540201144

DOWNLOAD EBOOK →

A comprehensive overview of the principles and applications of femtosecond lasers, especially applied to medicine and to production technology. The advantages and problems of ultrashort laser pulses are discussed in more detail in the context of applications in the micro-machining of technical materials such as drilling, surface structuring and cutting, in medical use like dental, ophthalmologic, neurological and otolaryngological applications, in metrology, and in the generation of x-rays. Safety aspects are also considered.