Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians

Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians PDF

Author: Francis Nier

Publisher: Springer

Published: 2005-01-17

Total Pages: 209

ISBN-13: 3540315535

DOWNLOAD EBOOK →

There has recently been a renewal of interest in Fokker-Planck operators, motivated by problems in statistical physics, in kinetic equations, and differential geometry. Compared to more standard problems in the spectral theory of partial differential operators, those operators are not self-adjoint and only hypoelliptic. The aim of the analysis is to give, as generally as possible, an accurate qualitative and quantitative description of the exponential return to the thermodynamical equilibrium. While exploring and improving recent results in this direction, this volume proposes a review of known techniques on: the hypoellipticity of polynomial of vector fields and its global counterpart, the global Weyl-Hörmander pseudo-differential calculus, the spectral theory of non-self-adjoint operators, the semi-classical analysis of Schrödinger-type operators, the Witten complexes, and the Morse inequalities.

Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians

Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians PDF

Author: Francis Nier

Publisher: Springer Science & Business Media

Published: 2005-02-11

Total Pages: 228

ISBN-13: 9783540242000

DOWNLOAD EBOOK →

There has recently been a renewal of interest in Fokker-Planck operators, motivated by problems in statistical physics, in kinetic equations, and differential geometry. Compared to more standard problems in the spectral theory of partial differential operators, those operators are not self-adjoint and only hypoelliptic. The aim of the analysis is to give, as generally as possible, an accurate qualitative and quantitative description of the exponential return to the thermodynamical equilibrium. While exploring and improving recent results in this direction, this volume proposes a review of known techniques on: the hypoellipticity of polynomial of vector fields and its global counterpart, the global Weyl-Hörmander pseudo-differential calculus, the spectral theory of non-self-adjoint operators, the semi-classical analysis of Schrödinger-type operators, the Witten complexes, and the Morse inequalities.

Operator-Related Function Theory and Time-Frequency Analysis

Operator-Related Function Theory and Time-Frequency Analysis PDF

Author: Karlheinz Gröchenig

Publisher: Springer

Published: 2014-11-25

Total Pages: 204

ISBN-13: 3319085573

DOWNLOAD EBOOK →

This book collects the proceedings of the 2012 Abel Symposium, held at the Norwegian Academy of Science and Letters, Oslo. The Symposium, and this book, are focused on two important fields of modern mathematical analysis: operator-related function theory and time-frequency analysis; and the profound interplay between them. Among the original contributions and overview lectures gathered here are a paper presenting multifractal analysis as a bridge between geometric measure theory and signal processing; local and global geometry of Prony systems and Fourier reconstruction of piecewise-smooth functions; Bernstein's problem on weighted polynomial approximation; singular distributions and symmetry of the spectrum; and many others. Offering a selection of the latest and most exciting results obtained by world-leading researchers, the book will benefit scientists working in Harmonic and Complex Analysis, Mathematical Physics and Signal Processing.

The Hypoelliptic Laplacian and Ray-Singer Metrics. (AM-167)

The Hypoelliptic Laplacian and Ray-Singer Metrics. (AM-167) PDF

Author: Jean-Michel Bismut

Publisher: Princeton University Press

Published: 2008-09-07

Total Pages: 377

ISBN-13: 0691137323

DOWNLOAD EBOOK →

This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion. The book shows that the hypoelliptic Laplacian provides a geometric version of the Fokker-Planck equations. The authors give the proper functional analytic setting in order to study this operator and develop a pseudodifferential calculus, which provides estimates on the hypoelliptic Laplacian's resolvent. When the deformation parameter tends to zero, the hypoelliptic Laplacian converges to the standard Hodge Laplacian of the base by a collapsing argument in which the fibers of the cotangent bundle collapse to a point. For the local index theory, small time asymptotics for the supertrace of the associated heat kernel are obtained. The Ray-Singer analytic torsion of the hypoelliptic Laplacian as well as the associated Ray-Singer metrics on the determinant of the cohomology are studied in an equivariant setting, resulting in a key comparison formula between the elliptic and hypoelliptic analytic torsions.

Complex Analysis

Complex Analysis PDF

Author: Peter Ebenfelt

Publisher: Springer Science & Business Media

Published: 2011-01-30

Total Pages: 353

ISBN-13: 3034600097

DOWNLOAD EBOOK →

This volume presents the proceedings of a conference on Several Complex Variables, PDE’s, Geometry, and their interactions held in 2008 at the University of Fribourg, Switzerland, in honor of Linda Rothschild.

Nonlinear Physical Systems

Nonlinear Physical Systems PDF

Author: Oleg N. Kirillov

Publisher: John Wiley & Sons

Published: 2013-12-11

Total Pages: 328

ISBN-13: 111857754X

DOWNLOAD EBOOK →

Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems. Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics, and dissipation-induced instabilities are treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. Each chapter contains mechanical and physical examples, and the combination of advanced material and more tutorial elements makes this book attractive for both experts and non-specialists keen to expand their knowledge on modern methods and trends in stability theory. Contents 1. Surprising Instabilities of Simple Elastic Structures, Davide Bigoni, Diego Misseroni, Giovanni Noselli and Daniele Zaccaria. 2. WKB Solutions Near an Unstable Equilibrium and Applications, Jean-François Bony, Setsuro Fujiié, Thierry Ramond and Maher Zerzeri, partially supported by French ANR project NOSEVOL. 3. The Sign Exchange Bifurcation in a Family of Linear Hamiltonian Systems, Richard Cushman, Johnathan Robbins and Dimitrii Sadovskii. 4. Dissipation Effect on Local and Global Fluid-Elastic Instabilities, Olivier Doaré. 5. Tunneling, Librations and Normal Forms in a Quantum Double Well with a Magnetic Field, Sergey Yu. Dobrokhotov and Anatoly Yu. Anikin. 6. Stability of Dipole Gap Solitons in Two-Dimensional Lattice Potentials, Nir Dror and Boris A. Malomed. 7. Representation of Wave Energy of a Rotating Flow in Terms of the Dispersion Relation, Yasuhide Fukumoto, Makoto Hirota and Youichi Mie. 8. Determining the Stability Domain of Perturbed Four-Dimensional Systems in 1:1 Resonance, Igor Hoveijn and Oleg N. Kirillov. 9. Index Theorems for Polynomial Pencils, Richard Kollár and Radomír Bosák. 10. Investigating Stability and Finding New Solutions in Conservative Fluid Flows Through Bifurcation Approaches, Paolo Luzzatto-Fegiz and Charles H.K. Williamson. 11. Evolution Equations for Finite Amplitude Waves in Parallel Shear Flows, Sherwin A. Maslowe. 12. Continuum Hamiltonian Hopf Bifurcation I, Philip J. Morrison and George I. Hagstrom. 13. Continuum Hamiltonian Hopf Bifurcation II, George I. Hagstrom and Philip J. Morrison. 14. Energy Stability Analysis for a Hybrid Fluid-Kinetic Plasma Model, Philip J. Morrison, Emanuele Tassi and Cesare Tronci. 15. Accurate Estimates for the Exponential Decay of Semigroups with Non-Self-Adjoint Generators, Francis Nier. 16. Stability Optimization for Polynomials and Matrices, Michael L. Overton. 17. Spectral Stability of Nonlinear Waves in KdV-Type Evolution Equations, Dmitry E. Pelinovsky. 18. Unfreezing Casimir Invariants: Singular Perturbations Giving Rise to Forbidden Instabilities, Zensho Yoshida and Philip J. Morrison. About the Authors Oleg N. Kirillov has been a Research Fellow at the Magneto-Hydrodynamics Division of the Helmholtz-Zentrum Dresden-Rossendorf in Germany since 2011. His research interests include non-conservative stability problems of structural mechanics and physics, perturbation theory of non-self-adjoint boundary eigenvalue problems, magnetohydrodynamics, friction-induced oscillations, dissipation-induced instabilities and non-Hermitian problems of optics and microwave physics. Since 2013 he has served as an Associate Editor for the journal Frontiers in Mathematical Physics. Dmitry E. Pelinovsky has been Professor at McMaster University in Canada since 2000. His research profile includes work with nonlinear partial differential equations, discrete dynamical systems, spectral theory, integrable systems, and numerical analysis. He served as the guest editor of the special issue of the journals Chaos in 2005 and Applicable Analysis in 2010. He is an Associate Editor of the journal Communications in Nonlinear Science and Numerical Simulations. This book is devoted to the problems of spectral analysis, stability and bifurcations arising from the nonlinear partial differential equations of modern physics. Leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics present state-of-the-art approaches to a wide spectrum of new challenging stability problems. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics and dissipation-induced instabilities will be treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. All chapters contain mechanical and physical examples and combine both tutorial and advanced sections, making them attractive both to experts in the field and non-specialists interested in knowing more about modern methods and trends in stability theory.

Analysis and Operator Theory

Analysis and Operator Theory PDF

Author: Themistocles M. Rassias

Publisher: Springer

Published: 2019-05-31

Total Pages: 416

ISBN-13: 3030126617

DOWNLOAD EBOOK →

Dedicated to Tosio Kato’s 100th birthday, this book contains research and survey papers on a broad spectrum of methods, theories, and problems in mathematics and mathematical physics. Survey papers and in-depth technical papers emphasize linear and nonlinear analysis, operator theory, partial differential equations, and functional analysis including nonlinear evolution equations, the Korteweg–de Vries equation, the Navier–Stokes equation, and perturbation theory of linear operators. The Kato inequality, the Kato type matrix limit theorem, the Howland–Kato commutator problem, the Kato-class of potentials, and the Trotter–Kato product formulae are discussed and analyzed. Graduate students, research mathematicians, and applied scientists will find that this book provides comprehensive insight into the significance of Tosio Kato’s impact to research in analysis and operator theory.

The d-bar Neumann Problem and Schrödinger Operators

The d-bar Neumann Problem and Schrödinger Operators PDF

Author: Friedrich Haslinger

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2014-08-20

Total Pages: 254

ISBN-13: 3110315351

DOWNLOAD EBOOK →

The topic of this book is located at the intersection of complex analysis, operator theory and partial differential equations. It begins with results on the canonical solution operator to restricted to Bergman spaces of holomorphic d-bar functions in one and several complex variables.These operators are Hankel operators of special type. In the following the general complex is investigated on d-bar spaces over bounded pseudoconvex domains and on weighted d-bar spaces. The main part is devoted to the spectral analysis of the complex Laplacian and to compactness of the Neumann operator. The last part contains a detailed account of the application of the methods to Schrödinger operators, Pauli and Dirac operators and to Witten-Laplacians. It is assumed that the reader has a basic knowledge of complex analysis, functional analysis and topology. With minimal prerequisites required, this book provides a systematic introduction to an active area of research for both students at a bachelor level and mathematicians.

Fokker–Planck–Kolmogorov Equations

Fokker–Planck–Kolmogorov Equations PDF

Author: Vladimir I. Bogachev

Publisher: American Mathematical Society

Published: 2022-02-10

Total Pages: 495

ISBN-13: 1470470098

DOWNLOAD EBOOK →

This book gives an exposition of the principal concepts and results related to second order elliptic and parabolic equations for measures, the main examples of which are Fokker–Planck–Kolmogorov equations for stationary and transition probabilities of diffusion processes. Existence and uniqueness of solutions are studied along with existence and Sobolev regularity of their densities and upper and lower bounds for the latter. The target readership includes mathematicians and physicists whose research is related to diffusion processes as well as elliptic and parabolic equations.