Hot Electrons in Semiconductors

Hot Electrons in Semiconductors PDF

Author: N. Balkan

Publisher:

Published: 1998

Total Pages: 536

ISBN-13: 9780198500582

DOWNLOAD EBOOK →

Under certain conditions electrons in a semiconductor become much hotter than the surrounding crystal lattice. When this happens, Ohm's Law breaks down: current no longer increases linearly with voltage and may even decrease. Hot electrons have long been a challenging problem in condensed matter physics and remain important in semiconductor research. Recent advances in technology have led to semiconductors with submicron dimensions, where electrons can be confined to two (quantum well), one (quantum wire), or zero (quantum dot) dimensions. In these devices small voltages heat electrons rapidly, inducing complex nonlinear behavior; the study of hot electrons is central to their further development. This book is the only comprehensive and up-to-date coverage of hot electrons. Intended for both established researchers and graduate students, it gives a complete account of the historical development of the subject, together with current research and future trends, and covers the physics of hot electrons in bulk and low-dimensional device technology. The contributions are from leading scientists in the field and are grouped broadly into five categories: introduction and overview; hot electron-phonon interactions and ultra-fast phenomena in bulk and two-dimensional structures; hot electrons in quantum wires and dots; hot electron tunneling and transport in superlattices; and novel devices based on hot electron transport.

Physics of Hot Electron Transport in Semiconductors

Physics of Hot Electron Transport in Semiconductors PDF

Author: Chin Sen Ting

Publisher: World Scientific

Published: 1992

Total Pages: 336

ISBN-13: 9789810210083

DOWNLOAD EBOOK →

This review volume is based primarily on the balance equation approach developed since 1984. It provides a simple and analytical description about hot electron transport, particularly, in semiconductors with higher carrier density where the carrier-carrier collision is much stronger than the single particle scattering. The steady state and time-dependent hot electron transport, thermal noise, hot phonon effect, the memory effect, and other related subjects of charge carriers under strong electric fields are reviewed. The application of Zubarev's nonequilibrium statistical operator to hot electron transport and its equivalence to the balance equation method are also presented. For semiconductors with very low carrier density, the problem can be regarded as a single carrier transport which will be treated non-perturbatively by the nonequilibrium Green's function technique and the path integral theory. The last part of this book consists of a chapter on the dynamic conductivity and the shot noise suppression of a double-carrier resonant tunneling system.

Hot Carriers in Semiconductors

Hot Carriers in Semiconductors PDF

Author: Karl Hess

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 575

ISBN-13: 1461304016

DOWNLOAD EBOOK →

This volume contains invited and contributed papers of the Ninth International Conference on Hot Carriers in Semiconductors (HCIS-9), held July 3 I-August 4, 1995 in Chicago, Illinois. In all, the conference featured 15 invited oral presentations, 60 contributed oral presentations, and 105 poster presentations, and an international contingent of 170 scientists. As in recent conferences, the main themes of the conference were related to nonlinear transport in semiconductor heterojunctions and included Bloch oscillations, laser diode structures, and femtosecond spectroscopy. Interesting questions related to nonlinear transport, size quantization, and intersubband scattering were addressed that are relevant to the new quantum cascade laser. Many lectures were geared toward quantum wires and dots and toward nanostructures and mesoscopic systems in general. It is expected that such research will open new horizons to nonlinear transport studies. An attempt was made by the program committee to increase the number of presen tations related directly to devices. The richness of nonlocal hot electron effects that were discussed as a result, in our opinion, suggests that future conferences should further encourage reports on such device research. On behalf of the Program and International Advisory Committees, we thank the participants, who made the conference a successful and pleasant experience, and the support of the Army Research Office, the Office of Naval Research, and the Beckman Institute of the University of Illinois at Urbana-Champaign. We are also indebted to Mrs. Sara Starkey and Mrs.

Hot Carrier Degradation in Semiconductor Devices

Hot Carrier Degradation in Semiconductor Devices PDF

Author: Tibor Grasser

Publisher: Springer

Published: 2014-10-29

Total Pages: 518

ISBN-13: 3319089943

DOWNLOAD EBOOK →

This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices. Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance.

Plasma and Current Instabilities in Semiconductors

Plasma and Current Instabilities in Semiconductors PDF

Author: Juras Pozhela

Publisher: Elsevier

Published: 2017-05-03

Total Pages: 319

ISBN-13: 1483189384

DOWNLOAD EBOOK →

Plasma and Current Instabilities in Semiconductors details the main ideas in the physics of plasma and current instabilities in semiconductors. The title first covers plasma in semiconductors, and then proceeds to tackling waves in plasma. Next, the selection details wave instabilities in plasma and drift instabilities. The text also discusses hot electrons, along with the instabilities due to inter-valley electron transfer. The next chapters talks about avalanche and recombination instabilities. The last chapter deals with plasma streams. The book will be of great use to student and professional electronics engineers and technicians.

Physics Of Hot Electron Transport In Semiconductors

Physics Of Hot Electron Transport In Semiconductors PDF

Author: C S Ting

Publisher: World Scientific

Published: 1992-04-14

Total Pages: 329

ISBN-13: 9814505471

DOWNLOAD EBOOK →

This review volume is based primarily on the balance equation approach developed since 1984. It provides a simple and analytical description about hot electron transport, particularly, in semiconductors with higher carrier density where the carrier-carrier collision is much stronger than the single particle scattering. The steady state and time-dependent hot electron transport, thermal noise, hot phonon effect, the memory effect, and other related subjects of charge carriers under strong electric fields are reviewed. The application of Zubarev's nonequilibrium statistical operator to hot electron transport and its equivalence to the balance equation method are also presented. For semiconductors with very low carrier density, the problem can be regarded as a single carrier transport which will be treated non-perturbatively by the nonequilibrium Green's function technique and the path integral theory. The last part of this book consists of a chapter on the dynamic conductivity and the shot noise suppression of a double-carrier resonant tunneling system.