High Temperature Gas-cooled Reactors

High Temperature Gas-cooled Reactors PDF

Author: Tetsuaki Takeda

Publisher: Academic Press

Published: 2021-02-24

Total Pages: 478

ISBN-13: 012821032X

DOWNLOAD EBOOK →

High-Temperature Gas Reactors is the fifth volume in the JSME Series on Thermal and Nuclear Power Generation. Series Editor Yasuo Koizumi and his Volume editors Tetsuaki Takeda and Yoshiyuki Inagaki present the latest research on High-Temperature Gas Reactor (HTGR) development and utilization, beginning with an analysis of the history of HTGRs. A detailed analysis of HTGR design features, including reactor core design, cooling tower design, pressure vessel design, I&C factors and safety design, provides readers with a solid understanding of how to develop efficient and safe HTGR within a nuclear power plant. The authors combine their knowledge to present a guide on the safety of HTGRs throughout the entire reactor system, drawing on their unique experience to pass on lessons learned and best practices to support professionals and researchers in their design and operation of these advanced reactor types. Case studies of critical testing carried out by the authors provide the reader with firsthand information on how to conduct tests safely and effectively and an understanding of which responses are required in unexpected incidents to achieve their research objectives. An analysis of technologies and systems in development and testing stages offer the reader a look to the future of HTGRs and help to direct and inform their further research in heat transfer, fluid-dynamics, fuel options and advanced reactor facility selection. This volume is of interest for nuclear and thermal energy engineers and researchers focusing on HTGRs, HTGR plant designers and operators, regulators, post graduate students of nuclear engineering, national labs, government officials and agencies in power and energy policy and regulations. Written by the leaders and pioneers in nuclear research at the Japanese Society of Mechanical Engineers and draws upon their combined wealth of knowledge and experience Includes real examples and case studies from Japan, the US and Europe to provide a deeper learning opportunity with practical benefits Considers the societal impact and sustainability concerns and goals throughout the discussion Includes safety factors and considerations, as well as unique results from performance testing of HTGR systems.

Modular High-temperature Gas-cooled Reactor Power Plant

Modular High-temperature Gas-cooled Reactor Power Plant PDF

Author: Kurt Kugeler

Publisher: Springer

Published: 2018-10-05

Total Pages: 893

ISBN-13: 3662577127

DOWNLOAD EBOOK →

"Modular High-temperature Gas-cooled Reactor Power Plant" introduces the power plants driven by modular high temperature gas-cooled reactors (HTR), which are characterized by their inherent safety features and high output temperatures. HTRs have the potential to be adopted near demand side to supply both electricity and process heat, directly replacing conventional fossil fuels. The world is confronted with two dilemmas in the energy sector, namely climate change and energy supply security. HTRs have the potential to significantly alleviate these concerns. This book will provide readers with a thorough understanding of HTRs, their history, principles, and fields of application. The book is intended for researchers and engineers involved with nuclear engineering and energy technology.

Accident Analysis for Nuclear Power Plants

Accident Analysis for Nuclear Power Plants PDF

Author: International Atomic Energy Agency

Publisher:

Published: 2002

Total Pages: 144

ISBN-13:

DOWNLOAD EBOOK →

Accident analysis is an important tool for confirming the adequacy and efficiency of provisions within the defence in depth concept for the safety of nuclear power plants (NPPs). The purpose of the report is to provide the necessary practical guidance for performing adequate accident analysis in the light of current good practice worldwide.

Advances in High Temperature Gas Cooled Reactor Fuel Technology

Advances in High Temperature Gas Cooled Reactor Fuel Technology PDF

Author: International Atomic Energy Agency

Publisher:

Published: 2012-06

Total Pages: 639

ISBN-13: 9789201253101

DOWNLOAD EBOOK →

This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

Thermal and Flow Design of Helium-cooled Reactors

Thermal and Flow Design of Helium-cooled Reactors PDF

Author: Gilbert Melese

Publisher:

Published: 1984

Total Pages: 444

ISBN-13:

DOWNLOAD EBOOK →

This source book provides both an overview of gas-cooled reactors and a detailed look at the high-temperature gas-cooled reactor (HTGR). Taking a worldwide perspective, this book reviews the early development of the HTGR and explores potential future development and applications.

Nuclear Hydrogen Production Handbook

Nuclear Hydrogen Production Handbook PDF

Author: Xing L. Yan

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 939

ISBN-13: 1439810842

DOWNLOAD EBOOK →

Written by two leading researchers from the world-renowned Japan Atomic Energy Agency, the Nuclear Hydrogen Production Handbook is an unrivalled overview of current and future prospects for the effective production of hydrogen via nuclear energy. Combining information from scholarly analyses, industrial data, references, and other resources, this h

Storage and Hybridization of Nuclear Energy

Storage and Hybridization of Nuclear Energy PDF

Author: Hitesh Bindra

Publisher: Academic Press

Published: 2018-11-22

Total Pages: 300

ISBN-13: 0128139765

DOWNLOAD EBOOK →

Storage and Hybridization of Nuclear Energy: Techno-economic Integration of Renewable and Nuclear Energy provides a unique analysis of the storage and hybridization of nuclear and renewable energy. Editor Bindra and his team of expert contributors present various global methodologies to obtain the techno-economic feasibility of the integration of storage or hybrid cycles in nuclear power plants. Aimed at those studying, researching and working in the nuclear engineering field, this book offers nuclear reactor technology vendors, nuclear utilities workers and regulatory commissioners a very unique resource on how to access reliable, flexible and clean energy from variable-generation. Presents a unique view on the technologies and systems available to integrate renewables and nuclear energy Provides insights into the different methodologies and technologies currently available for the storage of energy Includes case studies from well-known experts working on specific integration concepts around the world

Physics of High-Temperature Reactors

Physics of High-Temperature Reactors PDF

Author: Luigi Massimo

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 249

ISBN-13: 1483280284

DOWNLOAD EBOOK →

Physics of High-Temperature Reactors focuses on the physics of high-temperature reactors (HTRs) and covers topics ranging from fuel cycles and refueling strategies to neutron cross-sections, transport and diffusion theory, and resonance absorption. Spectrum calculations and cross-section averaging are also discussed, along with the temperature coefficient and reactor control. Comprised of 16 chapters, this book begins with a general description of the HTR core as well as its performance limitations. The next chapter deals with general considerations about HTR physics, including quantities to be determined and optimized in the design of nuclear reactors. Potential scattering and resonance reactions between neutrons and atomic nuclei are then considered, together with basic aspects of transport and diffusion theory. Subsequent chapters explore methods for solving the diffusion equation; slowing-down and neutron thermalization in graphite; HTR core design, fuel management, and cost calculations; and core dynamics and accident analysis. The final chapter describes the sequence of reactor design calculations. This monograph is written primarily for students of HTR physics who are preparing to enter the field as well as technologists of other disciplines who are working on the system.