High Speed Pneumatic Theory and Technology Volume II

High Speed Pneumatic Theory and Technology Volume II PDF

Author: Yaobao Yin

Publisher: Springer Nature

Published: 2020-01-30

Total Pages: 396

ISBN-13: 9811522022

DOWNLOAD EBOOK →

This book highlights the latest developments and the author’s own research achievements in high speed pneumatic control theory and applied technology. Chiefly focusing on the control system and energy system, it presents the basic theory and pioneering technologies for aerospace and aviation, while also addressing e.g. pneumatic servo control theory, pneumatic nonlinear mechanisms, aerothermodynamics, pneumatic servo mechanisms, and sample applications of high temperature and high speed gas turbine systems in aerospace, aviation, and major equipment.

High Speed Pneumatic Theory and Technology Volume I

High Speed Pneumatic Theory and Technology Volume I PDF

Author: Yaobao Yin

Publisher: Springer

Published: 2019-03-19

Total Pages: 360

ISBN-13: 9811359865

DOWNLOAD EBOOK →

This book covers the author’s research achievements and the latest advances in high-speed pneumatic control theory and applied technologies. It presents the basic theory and highlights pioneering technologies resulting from research and development efforts in aerospace, aviation and other major equipment, including: pneumatic servo control theory, pneumatic nonlinear mechanisms, aerothermodynamics, pneumatic servo mechanisms, and high-speed pneumatic control theory.

System Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

System Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft PDF

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-06-12

Total Pages: 134

ISBN-13: 9781721081677

DOWNLOAD EBOOK →

The primary aspiration of this study was to objectively assess the feasibility of the application of a low speed pneumatic technology, in particular Circulation Control (CC) to an HSCT concept. Circulation Control has been chosen as an enabling technology to be applied on a generic High Speed Civil Transport (HSCT). This technology has been proven for various subsonic vehicles including flight tests on a Navy A-6 and computational application on a Boeing 737. Yet, CC has not been widely accepted for general commercial fixed-wing use but its potential has been extensively investigated for decades in wind tunnels across the globe for application to rotorcraft. More recently, an experimental investigation was performed at Georgia Tech Research Institute (GTRI) with application to an HSCT-type configuration. The data from those experiments was to be applied to a full-scale vehicle to assess the impact from a system level point of view. Hence, this study attempted to quantitatively assess the impact of this technology to an HSCT. The study objective was achieved in three primary steps: 1) Defining the need for CC technology; 2) Wind tunnel data reduction; 3) Detailed takeoff/landing performance assessment. Defining the need for the CC technology application to an HSCT encompassed a preliminary system level analysis. This was accomplished through the utilization of recent developments in modern aircraft design theory at Aerospace Systems Design Laboratory (ASDL). These developments include the creation of techniques and methods needed for the identification of technical feasibility show stoppers. These techniques and methods allow the designer to rapidly assess a design space and disciplinary metric enhancements to enlarge or improve the design space. The takeoff and landing field lengths were identified as the concept "show-stoppers". Once the need for CC was established, the actual application of data and trends was assessed. This assessment entailed a reducti