High-Resolution Methods for Incompressible and Low-Speed Flows

High-Resolution Methods for Incompressible and Low-Speed Flows PDF

Author: D. Drikakis

Publisher: Springer Science & Business Media

Published: 2005-08-02

Total Pages: 623

ISBN-13: 354026454X

DOWNLOAD EBOOK →

The study of incompressible ?ows is vital to many areas of science and te- nology. This includes most of the ?uid dynamics that one ?nds in everyday life from the ?ow of air in a room to most weather phenomena. Inundertakingthesimulationofincompressible?uid?ows,oneoftentakes many issues for granted. As these ?ows become more realistic, the problems encountered become more vexing from a computational point-of-view. These range from the benign to the profound. At once, one must contend with the basic character of incompressible ?ows where sound waves have been analytically removed from the ?ow. As a consequence vortical ?ows have been analytically “preconditioned,” but the ?ow has a certain non-physical character (sound waves of in?nite velocity). At low speeds the ?ow will be deterministic and ordered, i.e., laminar. Laminar ?ows are governed by a balance between the inertial and viscous forces in the ?ow that provides the stability. Flows are often characterized by a dimensionless number known as the Reynolds number, which is the ratio of inertial to viscous forces in a ?ow. Laminar ?ows correspond to smaller Reynolds numbers. Even though laminar ?ows are organized in an orderly manner, the ?ows may exhibit instabilities and bifurcation phenomena which may eventually lead to transition and turbulence. Numerical modelling of suchphenomenarequireshighaccuracyandmostimportantlytogaingreater insight into the relationship of the numerical methods with the ?ow physics.

Computational Fluid Dynamics 2006

Computational Fluid Dynamics 2006 PDF

Author: Herman Deconinck

Publisher: Springer

Published: 2016-04-01

Total Pages: 916

ISBN-13: 9783662500903

DOWNLOAD EBOOK →

ThisbookcontainstheproceedingsoftheFourthInternationalConference onComputationalFluidDynamics(ICCFD4), heldinGent, Belgiumfrom July10through16,2006. TheICCFDconferenceseriesisanoutcomeofthe mergeroftwoimportantstreamsofconferencesinComputationalFluid- namics: InternationalConferenceonNumericalMethodsinFluidDynamics, ICNMFD(since1996)andInternationalSymposiumonComputationalFluid Dynamics, ISCFD(since1985). In1998itwasdecidedtojointhetwoand ICCFD emerged as a biannual meeting, held in Kyoto in 2000, Sydney in 2002, Toronto in 2004 and Gent in 2006. Thus, the ICCFD series became theleadinginternationalconferenceseriesforscientists, mathematiciansand engineersinterestedinthecomputationof?uid?ow. The4theditionoftheconferencehasattracted200participantsfromall overtheworld;270abstractswerereceived, ofwhich135wereselectedina carefulpeerreviewprocessbytheexecutivecommittee(C. H. Bruneau, J. -J. Chattot, D. Kwak, N. Satofuka, D. W. Zingg, E. DickandH. Deconinck)for oralpresentationandafurther21forposterpresentation. Thepaperscontainedintheseproceedingsprovideanexcellentsnapshot of the ?eld of Computational Fluid Dynamics as of 2006. Invited keynote lecturesbyrenownedresearchersareincluded, withcontributionsinthe?eld ofdiscretizationschemes, high-endcomputingandengineeringchallenges, and two-phase?ow. Thesekeynotecontributionsarecomplementedby137regular papersonthemostdiverseaspectsofCFD: -Innovativealgorithmdevelopmentfor?owsimulation, optimisationandc- trol: higher-ordermethods(DG, FV, FEandRDmethods), iterativemethods andmultigrid, solutionadaptivemeshtechniques, errorestimationandc- trol, parallelalgorithms. -Innovativemodelingof?owphysicsintheareaofcompressibleandinc- pressible ?ows: hypersonic and reacting ?ows, two-phase ?ows, turbulence (LES, DES, DNS, andtransition), vortexdynamics, boundarylayerstability, multi-scalephysics, magnetohydrodynamics. Preface VII -advancedapplicationsusingtheabovementionedinnovativetechnology, and multidisciplinaryapplicationsincludingaero-elasticityandaero-acoustics. ThanksareduetooursponsorsNASA, theFWOResearchFoundation FlandersandtheEuropeanUnionthroughtheEUA4XMarieCurieproject. Inparticular, thegenerousgrantfromNASAisakeyfactorinthesuccessof thisconferenceseriesandthepublicationoftheseProceedings. Wealsowouldliketothankthesta?andPhDstudentsofthevonKarman InstituteandtheDepartmentof?ow, heatandcombustionmechanicsofthe University of Gent, for the help they provided toward the success of this conference. Sint-Genesius-Rode, Belgium HermanDeconinck vonKarmanInstituteforFluidDynamics Ghent, Belgium ErikDick GhentUniversity September2006 ConferenceChair Contents PartIInvitedSpeakers Twonewtechniquesforgeneratingexactlyincompressible approximatevelocities BernardoCockburn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 RoleofHigh-EndComputinginMeetingNASA'sScience andEngineeringChallenges RupakBiswas, EugeneL. Tu, WilliamR. VanDalsem. . . . . . . . . . . . . . . . 14 RecentAdvancesofMulti-phaseFlowComputationwiththe AdaptiveSoroban-gridCubicInterpolatedPropagation(CIP) Method TakashiYabe, YouichiOgata, KenjiTakizawa. . . . . . . . . . . . . . . . . . . . . . . 29 PartIISchemes OntheComputationofSteady-StateCompressibleFlows UsingaDGMethod HongLuo, JosephD. Baum, RainaldL]ohner. . . . . . . . . . . . . . . . . . . . . . . . 47 Space-TimeDiscontinuousGalerkinMethodforLarge AmplitudeNonlinearWaterWaves YanXu, JaapJ. W. vanderVegt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 AdiscontinuousGalerkinmethodwi

Microfluidic Devices in Nanotechnology

Microfluidic Devices in Nanotechnology PDF

Author: Challa S. S. R. Kumar

Publisher: John Wiley & Sons

Published: 2010-11-29

Total Pages: 494

ISBN-13: 1118029224

DOWNLOAD EBOOK →

Nanotechnology, especially microfabrication, has been affecting every facet of traditional scientific disciplines. The first book on the application of microfluidic reactors in nanotechnology, Microfluidic Devices in Nanotechnology provides the fundamental aspects and potential applications of microfluidic devices, the physics of microfluids, specific methods of chemical synthesis of nanomaterials, and more. As the first book to discuss the unique properties and capabilities of these nanomaterials in the miniaturization of devices, this text serves as a one-stop resource for nanoscientists interested in microdevices.

Direct and Large-Eddy Simulation VI

Direct and Large-Eddy Simulation VI PDF

Author: E. Lamballais

Publisher: Springer Science & Business Media

Published: 2006-10-19

Total Pages: 783

ISBN-13: 1402051522

DOWNLOAD EBOOK →

The sixth ERCOFTAC Workshop on ‘Direct and Large-Eddy Simulation’ (DLES-6) was held at the University of Poitiers from September 12-14, 2005. Following the tradition of previous workshops in the DLES-series, this edition has reflected the state-of-the-art of numerical simulation of transitional and turbulent flows and provided an active forum for discussion of recent developments in simulation techniques and understanding of flow physics.

Computational Fluid Dynamics

Computational Fluid Dynamics PDF

Author: Jiri Blazek

Publisher: Butterworth-Heinemann

Published: 2015-04-23

Total Pages: 466

ISBN-13: 0128011726

DOWNLOAD EBOOK →

Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics. By providing complete coverage of the essential knowledge required in order to write codes or understand commercial codes, the book gives the reader an overview of fundamentals and solution strategies in the early chapters before moving on to cover the details of different solution techniques. This updated edition includes new worked programming examples, expanded coverage and recent literature regarding incompressible flows, the Discontinuous Galerkin Method, the Lattice Boltzmann Method, higher-order spatial schemes, implicit Runge-Kutta methods and parallelization. An accompanying companion website contains the sources of 1-D and 2-D Euler and Navier-Stokes flow solvers (structured and unstructured) and grid generators, along with tools for Von Neumann stability analysis of 1-D model equations and examples of various parallelization techniques. Will provide you with the knowledge required to develop and understand modern flow simulation codes Features new worked programming examples and expanded coverage of incompressible flows, implicit Runge-Kutta methods and code parallelization, among other topics Includes accompanying companion website that contains the sources of 1-D and 2-D flow solvers as well as grid generators and examples of parallelization techniques

Computational Fluid Dynamics

Computational Fluid Dynamics PDF

Author: Jiyuan Tu

Publisher: Butterworth-Heinemann

Published: 2012-11-27

Total Pages: 457

ISBN-13: 0080982778

DOWNLOAD EBOOK →

Computational Fluid Dynamics, Second Edition, provides an introduction to CFD fundamentals that focuses on the use of commercial CFD software to solve engineering problems. This new edition provides expanded coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method. There is additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used. The book combines an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, walking students through modeling and computing as well as interpretation of CFD results. It is ideal for senior level undergraduate and graduate students of mechanical, aerospace, civil, chemical, environmental and marine engineering. It can also help beginner users of commercial CFD software tools (including CFX and FLUENT). A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used 20% new content

Two-Fluid Model Stability, Simulation and Chaos

Two-Fluid Model Stability, Simulation and Chaos PDF

Author: Martín López de Bertodano

Publisher: Springer

Published: 2016-11-09

Total Pages: 367

ISBN-13: 3319449680

DOWNLOAD EBOOK →

This book addresses the linear and nonlinear two-phase stability of the one-dimensional Two-Fluid Model (TFM) material waves and the numerical methods used to solve it. The TFM fluid dynamic stability is a problem that remains open since its inception more than forty years ago. The difficulty is formidable because it involves the combined challenges of two-phase topological structure and turbulence, both nonlinear phenomena. The one dimensional approach permits the separation of the former from the latter.The authors first analyze the kinematic and Kelvin-Helmholtz instabilities with the simplified one-dimensional Fixed-Flux Model (FFM). They then analyze the density wave instability with the well-known Drift-Flux Model. They demonstrate that the Fixed-Flux and Drift-Flux assumptions are two complementary TFM simplifications that address two-phase local and global linear instabilities separately. Furthermore, they demonstrate with a well-posed FFM and a DFM two cases of nonlinear two-phase behavior that are chaotic and Lyapunov stable. On the practical side, they also assess the regularization of an ill-posed one-dimensional TFM industrial code. Furthermore, the one-dimensional stability analyses are applied to obtain well-posed CFD TFMs that are either stable (RANS) or Lyapunov stable (URANS), with the focus on numerical convergence.

OPTIROB 2013

OPTIROB 2013 PDF

Author: Adrian Olaru

Publisher: Trans Tech Publications Ltd

Published: 2013-07-15

Total Pages: 594

ISBN-13: 3038261149

DOWNLOAD EBOOK →

The main objective for this collection of 80 peer reviewed papers was to provide a platform for researchers, engineers, academicians as well as industrial professionals to present their latest experiences and developments activities in the field of Smart Systems and their Applications in Aerospace, Robotics, Mechanical Engineering, Manufacturing Systems, Biomechatronics and Neurorehabilitation.

Computation of Viscous Incompressible Flows

Computation of Viscous Incompressible Flows PDF

Author: Dochan Kwak

Publisher: Springer Science & Business Media

Published: 2010-12-14

Total Pages: 294

ISBN-13: 9400701934

DOWNLOAD EBOOK →

This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engineers to get useful information on CFD for their activities. The procedural details are given with respect to particular tasks from the authors’ field of research, for example simulations of liquid propellant rocket engine subsystems, turbo-pumps and the blood circulations in the human brain as well as the design of artificial heart devices. However, those examples serve as illustrations of computational and physical challenges relevant to many other fields. Unlike other books on incompressible flow simulations, no abstract mathematics are used in this book. Assuming some basic CFD knowledge, readers can easily transfer the insights gained from specific CFD applications in engineering to their area of interest.