Hands-On Accelerator Physics Using MATLAB®

Hands-On Accelerator Physics Using MATLAB® PDF

Author: Volker Ziemann

Publisher: CRC Press

Published: 2019-04-29

Total Pages: 358

ISBN-13: 0429957475

DOWNLOAD EBOOK →

Awarded one of BookAuthority's best new Particle Physics books in 2019! Hands-On Accelerator Physics Using MATLAB® provides an introduction into the design and operational issues of a wide range of particle accelerators, from ion-implanters to the Large Hadron Collider at CERN. Many aspects from the design of beam optical systems and magnets, to the subsystems for acceleration, beam diagnostics, and vacuum are covered. Beam dynamics topics ranging from the beam-beam interaction to free-electron lasers are discussed. Theoretical concepts and the design of key components are explained with the help of MATLAB® code. Practical topics, such as beam size measurements, magnet construction and measurements, and radio-frequency measurements are explored in student labs without requiring access to an accelerator. This unique approach provides a look at what goes on 'under the hood' inside modern accelerators and presents readers with the tools to perform their independent investigations on the computer or in student labs. This book will be of interest to graduate students, postgraduate researchers studying accelerator physics, as well as engineers entering the field. Features: Provides insights into both synchrotron light sources and colliders Discusses technical subsystems, including magnets, radio-frequency engineering, instrumentation and diagnostics, correction of imperfections, control, and cryogenics Accompanied by MATLAB® code, including a 3D-modeler to visualize the accelerators, and additional appendices which are available on the CRC Press website

Hands-On Accelerator Physics Using MATLAB®

Hands-On Accelerator Physics Using MATLAB® PDF

Author: Volker Ziemann (Associate professor of physics)

Publisher: CRC Press

Published: 2019

Total Pages: 0

ISBN-13: 9780429957451

DOWNLOAD EBOOK →

Awarded one of BookAuthority's best new Particle Physics books in 2019! Hands-On Accelerator Physics Using MATLAB® provides an introduction into the design and operational issues of a wide range of particle accelerators, from ion-implanters to the Large Hadron Collider at CERN. Many aspects from the design of beam optical systems and magnets, to the subsystems for acceleration, beam diagnostics, and vacuum are covered. Beam dynamics topics ranging from the beam-beam interaction to free-electron lasers are discussed. Theoretical concepts and the design of key components are explained with the help of MATLAB® code. Practical topics, such as beam size measurements, magnet construction and measurements, and radio-frequency measurements are explored in student labs without requiring access to an accelerator. This unique approach provides a look at what goes on 'under the hood' inside modern accelerators and presents readers with the tools to perform their independent investigations on the computer or in student labs. This book will be of interest to graduate students, postgraduate researchers studying accelerator physics, as well as engineers entering the field. Features: Provides insights into both synchrotron light sources and colliders Discusses technical subsystems, including magnets, radio-frequency engineering, instrumentation and diagnostics, correction of imperfections, control, and cryogenics Accompanied by MATLAB® code, including a 3D-modeler to visualize the accelerators, and additional appendices which are available on the CRC Press website MATLAB live-scripts to accompany the book can be found here: https://ziemann.web.cern.ch/ziemann/mybooks/mlx/

Hands-On Accelerator Physics Using MATLAB®

Hands-On Accelerator Physics Using MATLAB® PDF

Author: Volker Ziemann

Publisher: CRC Press

Published: 2019-04-29

Total Pages: 357

ISBN-13: 0429957467

DOWNLOAD EBOOK →

Awarded one of BookAuthority's best new Particle Physics books in 2019! Hands-On Accelerator Physics Using MATLAB® provides an introduction into the design and operational issues of a wide range of particle accelerators, from ion-implanters to the Large Hadron Collider at CERN. Many aspects from the design of beam optical systems and magnets, to the subsystems for acceleration, beam diagnostics, and vacuum are covered. Beam dynamics topics ranging from the beam-beam interaction to free-electron lasers are discussed. Theoretical concepts and the design of key components are explained with the help of MATLAB® code. Practical topics, such as beam size measurements, magnet construction and measurements, and radio-frequency measurements are explored in student labs without requiring access to an accelerator. This unique approach provides a look at what goes on 'under the hood' inside modern accelerators and presents readers with the tools to perform their independent investigations on the computer or in student labs. This book will be of interest to graduate students, postgraduate researchers studying accelerator physics, as well as engineers entering the field. Features: Provides insights into both synchrotron light sources and colliders Discusses technical subsystems, including magnets, radio-frequency engineering, instrumentation and diagnostics, correction of imperfections, control, and cryogenics Accompanied by MATLAB® code, including a 3D-modeler to visualize the accelerators, and additional appendices which are available on the CRC Press website MATLAB live-scripts to accompany the book can be found here: https://ziemann.web.cern.ch/ziemann/mybooks/mlx/

A Practical Introduction to Beam Physics and Particle Accelerators

A Practical Introduction to Beam Physics and Particle Accelerators PDF

Author: Santiago Bernal

Publisher:

Published: 2018

Total Pages:

ISBN-13: 9781643270883

DOWNLOAD EBOOK →

This book provides a brief exposition of the principles of beam physics and particle accelerators with an emphasis on numerical examples employing readily available computer tools. However, it avoids detailed derivations, instead inviting the reader to use general high-end languages such as Mathcad and Matlab, as well as specialized particle accelerator codes (e.g. MAD, WinAgile, Elegant, and others) to explore the principles presented. This approach allows readers to readily identify relevant design parameters and their scaling. In addition, the computer input files can serve as templates that can be easily adapted to other related situations.

A Practical Introduction to Beam Physics and Particle Accelerators

A Practical Introduction to Beam Physics and Particle Accelerators PDF

Author: Santiago Bernal

Publisher: Morgan & Claypool Publishers

Published: 2018-10-26

Total Pages: 149

ISBN-13: 1643270907

DOWNLOAD EBOOK →

This book provides a brief exposition of the principles of beam physics and particle accelerators with an emphasis on numerical examples employing readily available computer tools. However, it avoids detailed derivations, instead inviting the reader to use general high-end languages such as Mathcad and Matlab, as well as specialized particle accelerator codes (e.g. MAD, WinAgile, Elegant, and others) to explore the principles presented. This approach allows readers to readily identify relevant design parameters and their scaling. In addition, the computer input files can serve as templates that can be easily adapted to other related situations. The examples and computer exercises comprise basic lenses and deflectors, fringe fields, lattice and beam functions, synchrotron radiation, beam envelope matching, betatron resonances, and transverse and longitudinal emittance and space charge. The last chapter presents examples of two major types of particle accelerators: radio frequency linear accelerators (RF linacs) and storage rings. Lastly, the appendix gives readers a brief description of the computer tools employed and concise instructions for their installation and use in the most popular computer platforms (Windows, Macintosh and Ubuntu Linux). Hyperlinks to websites containing all relevant files are also included. An essential component of the book is its website (actually part of the author's website at the University of Maryland), which contains the files that reproduce results given in the text as well as additional material such as technical notes and movies.

Lectures On Accelerator Physics

Lectures On Accelerator Physics PDF

Author: Alexander Wu Chao

Publisher: World Scientific

Published: 2020-10-14

Total Pages: 915

ISBN-13: 981122675X

DOWNLOAD EBOOK →

This book is written for students who ever wondered about the mysterious and fascinating world of particle accelerators. What exciting physics and technologies lie within? What clever and ingenious ideas were applied in their seven decades of evolution? What promises still lay ahead in the future?Accelerators have been driving research and industrial advances for decades. This textbook illustrates the physical principles behind these incredible machines, often with intuitive pictures and simple mathematical models. Pure formalisms are avoided as much as possible. It is hoped that the readers would enjoy the fascinating physics behind these state-of-the-art devices.The style is informal and aimed for a graduate level without prerequisite of prior knowledge in accelerators. To serve as a textbook, references are listed only on the more established original literature and review articles instead of the constantly changing research frontiers.

Handbook of Accelerator Physics and Engineering

Handbook of Accelerator Physics and Engineering PDF

Author: Alex Chao

Publisher: World Scientific

Published: 1999

Total Pages: 702

ISBN-13: 9789810235000

DOWNLOAD EBOOK →

Edited by internationally recognized authorities in the field, this handbook focuses on Linacs, Synchrotrons and Storage Rings and is intended as a vade mecum for professional engineers and physicists engaged in these subjects. Here one will find, in addition to the common formulae of previous compilations, hard to find specialized formulae, recipes and material data pooled from the lifetime experiences of many of the world's most able practitioners of the art and science of accelerator building and operation.

Particle Accelerator Physics I

Particle Accelerator Physics I PDF

Author: Helmut Wiedemann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 465

ISBN-13: 3662038277

DOWNLOAD EBOOK →

In this second edition of Particle Accelerator Physics, Vol. 1, is mainly a reprint of the first edition without significant changes in content. The bibliography has been updated to include more recent progress in the field of particle accelerators. With the help of many observant readers a number of misprints and errors could be eliminated. The author would like to express his sincere appreciation to all those who have pointed out such shortcomings and wel comes such information and any other relevant information in the future. The author would also like to express his special thanks to the editor Dr. Helmut Lotsch and his staff for editorial as well as technical advice and support which contributed greatly to the broad acceptance of this text and made a second edition of both volumes necessary. Palo Alto, California Helmut Wiedemann November 1998 VII Preface to the First Edition The purpose of this textbook is to provide a comprehensive introduction into the physics of particle accelerators and particle beam dynamics. Parti cle accelerators have become important research tools in high energy physics as well as sources of incoherent and coherent radiation from the far infra red to hard x-rays for basic and applied research. During years of teaching accelerator physics it became clear that the single most annoying obstacle to get introduced into the field is the absence of a suitable textbook.

Engines of Discovery

Engines of Discovery PDF

Author: Andrew Sessler

Publisher: World Scientific

Published: 2014

Total Pages: 281

ISBN-13: 9814417203

DOWNLOAD EBOOK →

The first edition of Engines of Discovery celebrated in words, images and anecdotes the accelerators and their constructors that culminated in the discovery of the Higgs boson. But even before the Higgs was discovered, before the champagne corks popped and while the television producers brushed up their quantum mechanics, a new wave of enthusiasm for accelerators to be applied for more practical purposes was gaining momentum. Almost all fields of human endeavour will be enhanced by this trend: energy conservation, medical diagnostics and treatment, national security, as well as industrial processing. Accelerators have been used most spectacularly to reveal the structure of the complex molecules that determine our metabolism and life. For every accelerator chasing the Higgs, there are now ten thousand serving other purposes. It is high time to move from abstract mathematics and philosophy to the practical needs of humankind. It is the aim of this revised and expanded edition to describe this revolution in a manner which will attract the young, not only to apply their curiosity to the building blocks of matter but to help them contribute to the improvement of the quality of life itself on this planet. As always, the authors have tried to avoid lengthy mathematical description. In describing a field which reaches out to almost all of today's cutting edge technology, some detailed explanation cannot be avoided but this has been confined to sidebars. References guide experts to move on to the journal Reviews of Accelerator Science and Technology and other publications for more information. But first we would urge every young physicist, teacher, journalist and politician to read this book. Contents: Electrostatic Accelerators; Cyclotrons; Linear Accelerators; Betatrons; Synchrotrons; Colliders; Neutrino Super Beams, Neutrino Factories and Muon Colliders; Detectors; High-Energy and Nuclear Physics; Synchrotron Radiation Sources; Isotope Production and Cancer Therapy Accelerators; Spallation Neutron Sources; Accelerators in Industry and Elsewhere; National Security; Energy and the Environment; A Final Word OCo Mainly to the Young. Readership: Scientists, research physicists, engineers and administrators at accelerator laboratories; general readers; undergraduates and graduates in physics, electrical engineering and the history of science."