Probabilistic Graphical Models

Probabilistic Graphical Models PDF

Author: Daphne Koller

Publisher: MIT Press

Published: 2009-07-31

Total Pages: 1270

ISBN-13: 0262258358

DOWNLOAD EBOOK →

A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Bayesian Reasoning and Machine Learning

Bayesian Reasoning and Machine Learning PDF

Author: David Barber

Publisher: Cambridge University Press

Published: 2012-02-02

Total Pages: 739

ISBN-13: 0521518148

DOWNLOAD EBOOK →

A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.

Graphical Models in Applied Multivariate Statistics

Graphical Models in Applied Multivariate Statistics PDF

Author: Joe Whittaker

Publisher: Wiley

Published: 2009-03-02

Total Pages: 0

ISBN-13: 9780470743669

DOWNLOAD EBOOK →

The Wiley Paperback Series makes valuable content more accessible to a new generation of statisticians, mathematicians and scientists. Graphical models--a subset of log-linear models--reveal the interrelationships between multiple variables and features of the underlying conditional independence. This introduction to the use of graphical models in the description and modeling of multivariate systems covers conditional independence, several types of independence graphs, Gaussian models, issues in model selection, regression and decomposition. Many numerical examples and exercises with solutions are included. This book is aimed at students who require a course on applied multivariate statistics unified by the concept of conditional independence and researchers concerned with applying graphical modelling techniques.

Learning in Graphical Models

Learning in Graphical Models PDF

Author: M.I. Jordan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 658

ISBN-13: 9401150141

DOWNLOAD EBOOK →

In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.

Graph Representation Learning

Graph Representation Learning PDF

Author: William L. William L. Hamilton

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 141

ISBN-13: 3031015886

DOWNLOAD EBOOK →

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Statistical Modelling by Exponential Families

Statistical Modelling by Exponential Families PDF

Author: Rolf Sundberg

Publisher: Cambridge University Press

Published: 2019-08-29

Total Pages: 297

ISBN-13: 1108476597

DOWNLOAD EBOOK →

A readable, digestible introduction to essential theory and wealth of applications, with a vast set of examples and numerous exercises.

Introduction to Statistical Relational Learning

Introduction to Statistical Relational Learning PDF

Author: Lise Getoor

Publisher: MIT Press

Published: 2019-09-22

Total Pages: 602

ISBN-13: 0262538687

DOWNLOAD EBOOK →

Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications. Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.

Handbook of Graphical Models

Handbook of Graphical Models PDF

Author: Marloes Maathuis

Publisher: CRC Press

Published: 2018-11-12

Total Pages: 666

ISBN-13: 0429874235

DOWNLOAD EBOOK →

A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference. While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art. Key features: * Contributions by leading researchers from a range of disciplines * Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications * Balanced coverage of concepts, theory, methods, examples, and applications * Chapters can be read mostly independently, while cross-references highlight connections The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.

An Introduction to Conditional Random Fields

An Introduction to Conditional Random Fields PDF

Author: Charles Sutton

Publisher: Now Pub

Published: 2012

Total Pages: 120

ISBN-13: 9781601985729

DOWNLOAD EBOOK →

An Introduction to Conditional Random Fields provides a comprehensive tutorial aimed at application-oriented practitioners seeking to apply CRFs. The monograph does not assume previous knowledge of graphical modeling, and so is intended to be useful to practitioners in a wide variety of fields.