Graphene-Based Electrochemical Sensors for Biomolecules

Graphene-Based Electrochemical Sensors for Biomolecules PDF

Author: Alagarsamy Pandikumar

Publisher: Elsevier

Published: 2018-10-22

Total Pages: 364

ISBN-13: 0128156392

DOWNLOAD EBOOK →

Graphene-Based Electrochemical Sensors for Biomolecules presents the latest on these nanomaterials that have gained a lot of attention based on their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage and sensor applications. The hybridization of graphene with other nanomaterials induces a synergetic effect, leading to the improvement in electrical conductivity, stability and an enhancement of the electrocatalytic activity of the new nanocomposite material. This book discusses the electrochemical determination of a variety of biomolecules using graphene-based nanocomposite materials. Finally, recent progress in the development of electrochemical sensors using graphene-based nanocomposite materials and perspectives on future opportunities in sensor research and development are discussed in detail. Covers the importance of detecting biomolecules and the application of graphene and its nanocomposite materials in the detection of a wide variety of bioanalytes Presents easily understood fundamentals of electrochemical sensing systems and the role of graphene-based nanocomposite materials in research and development

Graphene-Based Electrochemical Sensors for Biomolecules

Graphene-Based Electrochemical Sensors for Biomolecules PDF

Author: Alagarsamy Pandikumar

Publisher: Elsevier

Published: 2018-11-09

Total Pages: 364

ISBN-13: 9780128153949

DOWNLOAD EBOOK →

Graphene-Based Electrochemical Sensors for Biomolecules presents the latest on these nanomaterials that have gained a lot of attention based on their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage and sensor applications. The hybridization of graphene with other nanomaterials induces a synergetic effect, leading to the improvement in electrical conductivity, stability and an enhancement of the electrocatalytic activity of the new nanocomposite material. This book discusses the electrochemical determination of a variety of biomolecules using graphene-based nanocomposite materials. Finally, recent progress in the development of electrochemical sensors using graphene-based nanocomposite materials and perspectives on future opportunities in sensor research and development are discussed in detail. Covers the importance of detecting biomolecules and the application of graphene and its nanocomposite materials in the detection of a wide variety of bioanalytes Presents easily understood fundamentals of electrochemical sensing systems and the role of graphene-based nanocomposite materials in research and development

Graphene-Based Electrochemical Sensors for Toxic Chemicals

Graphene-Based Electrochemical Sensors for Toxic Chemicals PDF

Author: Alagarsamy Pandikumar

Publisher: Materials Research Forum LLC

Published: 2020-10-15

Total Pages: 314

ISBN-13: 1644900955

DOWNLOAD EBOOK →

Graphene-based nanocomposites are very useful in detecting toxic chemicals such as heavy metals, inorganic anions, phenolic compounds, pesticides, and chemical warfare agents. The book presents recent progress on relevant topics: Toxicity of chemicals, importance of electrochemical sensors, different types of graphene-based nanomaterials, Neurotoxins and electroanalytical detection of toxic chemicals. Keywords: Graphene-based Nanocomposites, Electrochemical Sensors, Toxic Chemicals, Sensors for Toxic Molecules, Graphene-Metal Oxides, Graphene-Metal Chalcogenides, Graphene-Polymer Nanocomposites, Graphene-Carbon Nanotubes, Graphene-Carbon Nitrides, Graphene-MOF Composites, Heavy Metals, Phenolic Compounds, Pesticides, Chemical Warfare Agents.

Handbook of Graphene, Volume 6

Handbook of Graphene, Volume 6 PDF

Author: Barbara Palys

Publisher: John Wiley & Sons

Published: 2019-07-30

Total Pages: 961

ISBN-13: 1119469767

DOWNLOAD EBOOK →

The sixth volume in a series of handbooks on graphene research and applications The Handbook of Graphene, Volume 6: Biosensors and Advanced Sensors discusses the unique benefits that the discovery of graphene has brought to the sensing and biosensing sectors. It examines graphene's use in leading-edge technology applications and the development of a variety of graphene-based sensors. The handbook looks at how graphene can be used as an electrode, substrate, or transducer in sensor design. Graphene-based sensor detection has achieved up to femto-levels, with performances delivering the advantages of greater selectivity, sensitivity, and stability.

Electrochemical Biosensors

Electrochemical Biosensors PDF

Author: Serge Cosnier

Publisher: CRC Press

Published: 2015-01-26

Total Pages: 405

ISBN-13: 9814411477

DOWNLOAD EBOOK →

Since four decades, rapid detection and monitoring in clinical and food diagnostics and in environmental and biodefense have paved the way for the elaboration of electrochemical biosensors. Thanks to their adaptability, ease of use in relatively complex samples, and their portability, electrochemical biosensors now are one of the mainstays of analy

Electrochemical Sensors Technology

Electrochemical Sensors Technology PDF

Author: Mohammed Rahman

Publisher: BoD – Books on Demand

Published: 2017-05-31

Total Pages: 172

ISBN-13: 9535131931

DOWNLOAD EBOOK →

This book Electrochemical Sensors Technology mostly reviews the modem methods and significant electrochemical and electroanalytical applications of chemical sensors and biosensors. Chapters of this book are invited and contributed from the experts throughout the world from prominent researchers and scientists in the field of sensors and in the field of electro- and biochemistry. Each chapter provides technical and methodological details beyond the level found in typical journal articles or reviews and explores the application of chemical sensors, environmental sensors, and biosensors to a significant problem in biomedical and environmental science, also providing a prospectus for the future. This book compiles with the expert knowledge of many specialists in the construction and use of chemical sensors and biosensors including chemical sensors, biological sensors, DNA sensors, immunosensors, gaseous sensors, ionic sensors, bioassay sensors, lab-on-chips, devices, portable sensors, microchips, nanosensors, implantable microsensors, and so on in the field of fundamental and applied electrochemistry. Highlights and importance are laid on real or practical problems, ranging from chemical application to biomedical monitoring, from in vitro to in vivo, and from single cell to animal to human measurement. This offers a unique opportunity of exchanging and combining the scientist or researcher in electrochemical sensors in largely chemistry, biological engineering, electronic engineering, and biomedical and physiological fields.

Functionalized Nanomaterial-Based Electrochemical Sensors

Functionalized Nanomaterial-Based Electrochemical Sensors PDF

Author: Chaudhery Mustansar Hussain

Publisher: Woodhead Publishing

Published: 2022-01-11

Total Pages: 612

ISBN-13: 0128241853

DOWNLOAD EBOOK →

Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications provides a comprehensive overview of materials, functionalized interfaces, fabrication strategies and application areas. Special attention is given to the remaining challenges and opportunities for commercial realization of functionalized nanomaterial-based electrochemical sensors. An assortment of nanomaterials has been investigated for their incorporation into electrochemical sensors. For example, carbon- based nanomaterials (carbon nanotube, graphene and carbon fiber), noble metals (Au, Ag and Pt), polymers (nafion, polypyrrole) and non-noble metal oxides (Fe2O3, NiO, and Co3O4). The most relevant materials are discussed in the book with an emphasis on their evaluation of their realization in commercial applications. Application areas touched on include the environment, food and medicine industries. Health, safety and regulation considerations are touched on, along with economic and commercialization trends. Introduces the principles of nanomaterials for electrochemical sensing applications Reviews the most relevant fabrication strategies for functionalized nanomaterial-based electrochemical sensing platforms Discusses considerations for the commercial realization of functionalized nanomaterial-based electrochemical sensors in the environment, food and point-of-care applications

Graphene Based Electrical Biosensors for the Detection of Biomolecules

Graphene Based Electrical Biosensors for the Detection of Biomolecules PDF

Author: Chun Yu Chan

Publisher:

Published: 2016

Total Pages: 191

ISBN-13:

DOWNLOAD EBOOK →

In the second project, long capture probe similar to the first project was applied in a CVD graphene-based biosensor. Here, a secondary reporter probe with gold nano-particles conjugated with target complementary oligonucleotide was applied. The reporter probe enhanced the sensitivity of the biosensor and the detection limit was as low as 64 fM. More importantly, it has the ability to differentiate single-base mismatch from fully complementary sequence which suggested an excellent specificity. In the final chapter, a reduced graphene oxide-based electrochemical biosensor was developed for sensing botulinum neurotoxin type A. An artificially synthesized recognition probe (SNAP-25-GFP) with cleavage site for botulinum neurotoxin type A was immobilized on the surface of reduced graphene oxide. Initially, the electrode surface was covered making it inaccessible to the redox probe in the standard buffer. When botulinum neurotoxin type A presented in the analyte, the probe on the surface of reduced graphene oxide was removed exposing the electrode, thus recovering the electrochemical signal. This sensing system demonstrated a very good limit of detection against botulinum neurotoxin A with excellent specificity, which only fresh and active botulinum neurotoxin A can be detected. More importantly, this electrochemical-sensing platform was proved to be functioning when botulinum neurotoxin A dispersed in milk, mimicking a real-life sample. The low interference suggested its potential to be applied as an on-site toxin screening platform.

Nanomaterials-Based Electrochemical Sensors: Properties, Applications, and Recent Advances

Nanomaterials-Based Electrochemical Sensors: Properties, Applications, and Recent Advances PDF

Author: Awais Ahmad

Publisher: Elsevier

Published: 2023-11-29

Total Pages: 341

ISBN-13: 0128225130

DOWNLOAD EBOOK →

As opposed to conventional electrochemical sensors, nanomaterials-based sensors are active and effective in their action with even a minute concentration of analyte. A number of research studies are bringing about an evolution in their development and advancement because of their unique and effective properties. Nanoscale electrochemical sensors have applications in almost every field of life including the detection of neurochemicals, heavy metals, energy components, body fluids, biological matrices, cancer relevant biomolecules, aromatic hydrocarbons, also in playing their role in food science because of their capability in providing quality control and safety. There is a need to develop these nanomaterials-based electrochemical sensors to be more widely available for accurate sensing of minute concentrations especially in the case of heavy metal detection, biofluids, and other biomaterials. This book outlines the major preparation, fabrication and manufacture of nanomaterials-based electrochemical sensors, as well as detailing their principle medical, environmental and industrial applications in an effort to meet this need.This book is a valuable reference source for materials scientists, engineers, electrochemists, environmental engineers and biomedical engineers who want to understand how nanomaterials-based electrochemical sensors are made, and how they are used. Explains the techniques used for the fabrication and manufacture of nanomaterials-based electrochemical sensors Discusses the major applications of nanomaterials-based electrochemical sensors in biomedicine and environmental science Assesses the potential toxicity and other challenges associated with using nanomaterials-based electrochemical sensors